Jake McMullen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6148131/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Informative tools for characterizing individual differences in learning: Latent class, latent profile, and latent transition analysis. Learning and Individual Differences, 2018, 66, 4-15.	1.5	148
2	Effects of a mathematics game-based learning environment on primary school students' adaptive number knowledge. Computers and Education, 2019, 128, 63-74.	5.1	79
3	Modeling the developmental trajectories of rational number concept(s). Learning and Instruction, 2015, 37, 14-20.	1.9	62
4	Cultivating mathematical skills: from drill-and-practice to deliberate practice. ZDM - International Journal on Mathematics Education, 2017, 49, 625-636.	1.3	45
5	Assessing fraction knowledge by a digital game. Computers in Human Behavior, 2017, 70, 197-206.	5.1	43
6	Spontaneous Focusing on Quantitative Relations in the Development of Children's Fraction Knowledge. Cognition and Instruction, 2014, 32, 198-218.	1.9	42
7	Adaptive number knowledge and its relation to arithmetic and pre-algebra knowledge. Learning and Instruction, 2017, 49, 178-187.	1.9	33
8	Adaptive number knowledge: Exploring the foundations of adaptivity with whole-number arithmetic. Learning and Individual Differences, 2016, 47, 172-181.	1.5	31
9	Young children's recognition of quantitative relations in mathematically unspecified settings. Journal of Mathematical Behavior, 2013, 32, 450-460.	0.5	29
10	Spontaneous focusing on quantitative relations as a predictor of the development of rational number conceptual knowledge Journal of Educational Psychology, 2016, 108, 857-868.	2.1	29
11	Preschool spontaneous focusing on numerosity predicts rational number conceptual knowledge 6Ayears later. ZDM - International Journal on Mathematics Education, 2015, 47, 813-824.	1.3	28
12	Spontaneous focusing on numerosity in preschool as a predictor of mathematical skills and knowledge in the fifth grade. Journal of Experimental Child Psychology, 2018, 169, 42-58.	0.7	25
13	Early Developmental Trajectories Toward Concepts of Rational Numbers. Cognition and Instruction, 2017, 35, 4-19.	1.9	19
14	Spontaneous focusing on quantitative relations as a predictor of rational number and algebra knowledge. Contemporary Educational Psychology, 2017, 51, 356-365.	1.6	18
15	THE RELATION BETWEEN LEARNERS' SPONTANEOUS FOCUSING ON QUANTITATIVE RELATIONS AND THEIR RATIONAL NUMBER KNOWLEDGE. Studia Psychologica, 2016, 58, 156-170.	0.3	18
16	The role of rational number density knowledge in mathematical development. Learning and Instruction, 2020, 65, 101228.	1.9	17
17	Moving mathematics out of the classroom: Using mobile technology to enhance spontaneous focusing on quantitative relations. British Journal of Educational Technology, 2019, 50, 562-573.	3.9	16
18	Distinguishing adaptive from routine expertise with rational number arithmetic. Learning and Instruction, 2020, 68, 101347.	1.9	15

JAKE MCMULLEN

#	Article	IF	CITATIONS
19	Individual differences in fraction arithmetic learning. Cognitive Psychology, 2019, 112, 81-98.	0.9	14
20	Profiles of rational number knowledge in Finnish and Flemish students – A multigroup latent class analysis. Learning and Individual Differences, 2018, 66, 70-77.	1.5	12
21	Tools for the classroom? An examination of existing sociometric methods for teacher use. Scandinavian Journal of Educational Research, 2014, 58, 624-638.	1.0	11
22	Number Navigation Game (NNG): Design Principles and Game Description. , 2015, , 45-61.		11
23	Spontaneous Mathematical Focusing Tendencies in Mathematical Development and Education. Research in Mathematics Education, 2019, , 69-86.	0.1	11
24	Improving rational number knowledge using the NanoRoboMath digital game. Educational Studies in Mathematics, 2022, 110, 101-123.	1.8	9
25	Cross-notation knowledge of fractions and decimals. Journal of Experimental Child Psychology, 2022, 213, 105210.	0.7	7
26	Voluntary vs Compulsory Playing Contexts. Simulation and Gaming, 2017, 48, 36-55.	1.2	6
27	Number Navigation Game (NNG): Experience and Motivational Effects. , 2015, , 171-189.		6
28	Is the study about spontaneous attention to exact quantity based on studies of spontaneous focusing on numerosity?. European Journal of Developmental Psychology, 2016, 13, 115-120.	1.0	5
29	Latent variable mixture models in research on learning and individual differences. Learning and Individual Differences, 2018, 66, 1-3.	1.5	4
30	Flow Experience and Situational Interest in an Adaptive Math Game. Lecture Notes in Computer Science, 2020, , 221-231.	1.0	4
31	Predicting adaptive expertise with rational number arithmetic. British Journal of Educational Psychology, 2022, 92, 688-706.	1.6	4
32	Spontaneous mathematical focusing tendencies in mathematical development. Mathematical Thinking and Learning, 2020, 22, 249-257.	0.7	3
33	A Game-Based Approach to Examining Students' Conceptual Knowledge of Fractions. Lecture Notes in Computer Science, 2016, , 37-49.	1.0	2
34	Studies on spontaneous attention to number (SAN) are based on spontaneous focusing on numerosity (SFON). European Journal of Developmental Psychology, 2016, 13, 179-182.	1.0	2
35	Everyday Context and Mathematical Learning: On the Role of Spontaneous Mathematical Focusing Tendencies in the Development of Numeracy. , 2019, , 25-42.		1
36	Adaptive number knowledge in secondary school students: Profiles and antecedents. Journal of Numerical Cognition, 2019, 5, 283-300.	0.6	1

JAKE MCMULLEN

#	Article	IF	CITATIONS
37	Expertise Development and Scientific Thinking. , 2019, , 179-202.		1
38	Latent classes from complex assessments: What do they tell us?. Learning and Individual Differences, 2020, 83-84, 101944.	1.5	0
39	Spontaneous focusing on multiplicative relations and fraction magnitude knowledge. Mathematical Thinking and Learning, 2020, 22, 351-359.	0.7	0
40	Supporting early numeracy: The role of spontaneous mathematical focusing tendencies in learning and instruction. , 2021, , 207-227.		0
41	Guiding students' attention towards multiplicative relations around them: A classroom intervention. Journal of Numerical Cognition, 2022, 8, 36-52.	0.6	0
42	Mathematical skills of 11-year-old children born very preterm and full-term. Journal of Experimental Child Psychology, 2022, 219, 105390.	0.7	0