

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6148114/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Luminescent films for chemo- and biosensing. Chemical Society Reviews, 2015, 44, 6981-7009.	38.1	254
2	Layered Double Hydroxide–Carbon Dot Composite: High-Performance Adsorbent for Removal of Anionic Organic Dye. ACS Applied Materials & Interfaces, 2014, 6, 20225-20233.	8.0	204
3	The identification of an ESCC susceptibility SNP rs920778 that regulates the expression of IncRNA <i>HOTAIR</i> via a novel intronic enhancer. Carcinogenesis, 2014, 35, 2062-2067.	2.8	146
4	Synthesis and Design of Aggregationâ€induced Emission Surfactants: Direct Observation of Micelle Transitions and Microemulsion Droplets. Angewandte Chemie - International Edition, 2015, 54, 15160-15164.	13.8	144
5	Production of superoxide anion radicals as evidence for carbon nanodots acting as electron donors by the chemiluminescence method. Chemical Communications, 2013, 49, 5871.	4.1	133
6	High selectivity sensing of cobalt in HepG2 cells based on necklace model microenvironment-modulated carbon dot-improved chemiluminescence in Fenton-like system. Biosensors and Bioelectronics, 2013, 45, 58-64.	10.1	127
7	Nanomaterial-amplified chemiluminescence systems and their applications in bioassays. TrAC - Trends in Analytical Chemistry, 2011, 30, 401-413.	11.4	121
8	Enhancement of Ultraweak Chemiluminescence from Reaction of Hydrogen Peroxide and Bisulfite by Water-Soluble Carbon Nanodots. Journal of Physical Chemistry C, 2011, 115, 21707-21714.	3.1	115
9	Activating efficient room temperature phosphorescence of carbon dots by synergism of orderly non-noble metals and dual structural confinements. Nanoscale, 2017, 9, 6658-6664.	5.6	106
10	Structure observation of graphene quantum dots by single-layered formation in layered confinement space. Chemical Science, 2015, 6, 4846-4850.	7.4	101
11	Fluorescence microscopy as an alternative to electron microscopy for microscale dispersion evaluation of organic–inorganic composites. Nature Communications, 2016, 7, 11811.	12.8	101
12	Large-scale preparation for efficient polymer-based room-temperature phosphorescence via click chemistry. Science Advances, 2020, 6, eaaz6107.	10.3	101
13	Detection of Oxygen Vacancies in Oxides by Defect-Dependent Cataluminescence. Analytical Chemistry, 2015, 87, 7313-7320.	6.5	98
14	Fluorescent Gold Nanocluster-Based Sensor Array for Nitrophenol Isomer Discrimination via an Integration of Host–Guest Interaction and Inner Filter Effect. Analytical Chemistry, 2018, 90, 12846-12853.	6.5	97
15	Carbon quantum dot-gold nanocluster nanosatellite for ratiometric fluorescence probe and imaging for hydrogen peroxide in living cells. Sensors and Actuators B: Chemical, 2017, 241, 821-827.	7.8	90
16	Layered Double Hydroxide-Supported Carbon Dots as an Efficient Heterogeneous Fenton-Like Catalyst for Generation of Hydroxyl Radicals. Journal of Physical Chemistry C, 2014, 118, 10441-10447.	3.1	85
17	Aggregation-Induced Emission: A Simple Strategy to Improve Chemiluminescence Resonance Energy Transfer. Analytical Chemistry, 2015, 87, 1351-1357.	6.5	84
18	Gold nanoparticles as sensitive optical probes. Analyst, The, 2016, 141, 1611-1626.	3.5	84

#	Article	IF	CITATIONS
19	Dual-mode emission of single-layered graphene quantum dots in confined nanospace: Anti-counterfeiting and sensor applications. Nano Research, 2018, 11, 2034-2045.	10.4	83
20	Aminothiols Sensing Based on Fluorosurfactant-Mediated Triangular Gold Nanoparticle-Catalyzed Luminol Chemiluminescence. Journal of Physical Chemistry C, 2011, 115, 10964-10970.	3.1	79
21	Rapid Screening of Oxygen States in Carbon Quantum Dots by Chemiluminescence Probe. Analytical Chemistry, 2017, 89, 12520-12526.	6.5	71
22	Defectâ€Stabilized Triplet State Excitons: Toward Ultralong Organic Roomâ€Temperature Phosphorescence. Advanced Functional Materials, 2018, 28, 1804961.	14.9	70
23	Determination of bisphenol A based on chemiluminescence from gold(III)–peroxymonocarbonate. Talanta, 2010, 82, 1576-1580.	5.5	68
24	Mg–Al–carbonate layered double hydroxides as a novel catalyst of luminol chemiluminescence. Chemical Communications, 2011, 47, 5479-5481.	4.1	62
25	Turnâ€On Luminescent Probes for the Realâ€Time Monitoring of Endogenous Hydroxyl Radicals in Living Cells. Angewandte Chemie - International Edition, 2016, 55, 4236-4241.	13.8	61
26	Radical Pair-Driven Luminescence of Quantum Dots for Specific Detection of Peroxynitrite in Living Cells. Analytical Chemistry, 2016, 88, 2659-2665.	6.5	61
27	Carbonate interlayered hydrotalcites-enhanced peroxynitrous acid chemiluminescence for high selectivity sensing of ascorbic acid. Analyst, The, 2012, 137, 1876.	3.5	60
28	Organo-Modified Hydrotalcite-Quantum Dot Nanocomposites as a Novel Chemiluminescence Resonance Energy Transfer Probe. Analytical Chemistry, 2013, 85, 3363-3368.	6.5	58
29	Silver nanoclusters as fluorescent nanosensors for selective and sensitive nitrite detection. Analytical Methods, 2016, 8, 2628-2633.	2.7	58
30	Chemiluminescence Resonance Energy Transfer Efficiency and Donor–Acceptor Distance: from Qualitative to Quantitative. Angewandte Chemie - International Edition, 2021, 60, 13029-13034.	13.8	58
31	Improved Chemiluminescence in Fenton-Like Reaction via Dodecylbenzene-Sulfonate-Intercalated Layered Double Hydroxides. Journal of Physical Chemistry C, 2012, 116, 14711-14716.	3.1	53
32	Chemiluminescence study of carbonate and peroxynitrous acid and its application to the direct determination of nitrite based on solid surface enhancement. Analytica Chimica Acta, 2004, 510, 29-34.	5.4	50
33	Ultrastable BSA-capped gold nanoclusters with a polymer-like shielding layer against reactive oxygen species in living cells. Nanoscale, 2016, 8, 9614-9620.	5.6	48
34	Gold Nanoclusters@Ru(bpy) ₃ ²⁺ -Layered Double Hydroxide Ultrathin Film as a Cathodic Electrochemiluminescence Resonance Energy Transfer Probe. Analytical Chemistry, 2015, 87, 8026-8032.	6.5	47
35	Aggregationâ€Induced Emission for Visualization in Materials Science. Chemistry - an Asian Journal, 2019, 14, 715-729.	3.3	47
36	Acetone Cataluminescence as an Indicator for Evaluation of Heterogeneous Base Catalysts in Biodiesel Production. Analytical Chemistry, 2014, 86, 870-875.	6.5	46

#	Article	IF	CITATIONS
37	Luminescent probes for hypochlorous acid <i>in vitro</i> and <i>in vivo</i> . Analyst, The, 2020, 145, 5068-5089.	3.5	45
38	Visualization of materials using the confocal laser scanning microscopy technique. Chemical Society Reviews, 2020, 49, 2408-2425.	38.1	43
39	Screening of Photosensitizers by Chemiluminescence Monitoring of Formation Dynamics of Singlet Oxygen during Photodynamic Therapy. Analytical Chemistry, 2016, 88, 9707-9713.	6.5	40
40	Nitrogen Vacancy Engineering in Graphitic Carbon Nitride for Strong, Stable, and Wavelength Tunable Electrochemiluminescence Emissions. Analytical Chemistry, 2021, 93, 2678-2686.	6.5	40
41	Chemisorbed Oxygen on the Surface of Catalyst-Improved Cataluminescence Selectivity. Analytical Chemistry, 2016, 88, 4987-4994.	6.5	39
42	Highly fluorescent polyethyleneimine protected Au8 nanoclusters: One-pot synthesis and application in hemoglobin detection. Sensors and Actuators B: Chemical, 2019, 291, 170-176.	7.8	39
43	Detection of hydrogen peroxide in rainwater based on Mg-Al-carbonate layered double hydroxides-catalyzed luminol chemiluminescence. Analyst, The, 2011, 136, 4986.	3.5	37
44	A controllable selective cataluminescence sensor for diethyl ether using mesoporous TiO2 nanoparticles. Sensors and Actuators B: Chemical, 2016, 230, 242-249.	7.8	37
45	Organo-Modified Layered Double Hydroxides Switch-On Chemiluminescence. Journal of Physical Chemistry C, 2012, 116, 6371-6375.	3.1	36
46	Chemiluminescence flow biosensor for glucose using Mg-Al carbonate layered double hydroxides as catalysts and buffer solutions. Biosensors and Bioelectronics, 2012, 38, 284-288.	10.1	36
47	Universal Chemiluminescence Flow-Through Device Based on Directed Self-Assembly of Solid-State Organic Chromophores on Layered Double Hydroxide Matrix. Analytical Chemistry, 2013, 85, 2436-2442.	6.5	36
48	Colorimetric detection of biological hydrogen sulfide using fluorosurfactant functionalized gold nanorods. Analyst, The, 2015, 140, 7443-7450.	3.5	36
49	Insights into the role of nanostructure in the sensing properties of carbon nanodots for improved sensitivity to reactive oxygen species in living cells. Chemical Communications, 2017, 53, 2122-2125.	4.1	35
50	A Eu3+-inspired fluorescent carbon nanodot probe for the sensitive visualization of anthrax biomarker by integrating EDTA chelation. Talanta, 2020, 208, 120368.	5.5	34
51	Highly dispersed layered double oxide hollow spheres with sufficient active sites for adsorption of methyl blue. Nanoscale, 2018, 10, 23191-23197.	5.6	33
52	Fluorescent sensor array for separation-free dopamine analogue discrimination <i>via</i> polyethyleneimine-mediated self-polymerization reaction. Nanoscale, 2019, 11, 12889-12897.	5.6	33
53	Introducing Confinement Effects into Ultraweak Chemiluminescence for an Improved Sensitivity. Analytical Chemistry, 2014, 86, 7947-7953.	6.5	32
54	Confinement Effect in Layered Double Hydroxide Nanoreactor: Improved Optical Sensing Selectivity. Analytical Chemistry, 2016, 88, 8188-8193.	6.5	31

Chao Lu

#	Article	IF	CITATIONS
55	Gold nanorod-catalyzed luminol chemiluminescence and its selective determination of glutathione in the cell extracts of Saccharomyces cerevisiae. Talanta, 2011, 85, 476-481.	5.5	30
56	Superoxide-Triggered Luminol Electrochemiluminescence for Detection of Oxygen Vacancy in Oxides. Analytical Chemistry, 2020, 92, 1628-1634.	6.5	30
57	Carbon dot-assisted luminescence of singlet oxygen: the generation dynamics but not the cumulative amount of singlet oxygen is responsible for the photodynamic therapy efficacy. Nanoscale Horizons, 2020, 5, 978-985.	8.0	29
58	Hydrotalcite-supported gold nanoparticle catalysts as a low temperature cataluminescence sensing platform. Sensors and Actuators B: Chemical, 2015, 219, 354-360.	7.8	28
59	Lighting up the interactions between bacteria and surfactants with aggregation-induced emission characteristics. Materials Chemistry Frontiers, 2017, 1, 1829-1835.	5.9	28
60	Highly selective chemiluminescence detection of hydroxyl radical via increased ï€-electron densities of rhodamine B on montmorillonite matrix. Sensors and Actuators B: Chemical, 2016, 225, 600-606.	7.8	27
61	Recent advances in cataluminescence-based optical sensing systems. Analyst, The, 2017, 142, 1415-1428.	3.5	27
62	Measurement of Solubilization Location in Micelles Using Anchored Aggregationâ€Induced Emission Donors. Angewandte Chemie - International Edition, 2020, 59, 12800-12805.	13.8	27
63	Cuâ€Doped Carbon Dots with Highly Ordered Alignment in Anisotropic Nanoâ€Space for Improving the Photocatalytic Performance. Solar Rrl, 2017, 1, 1700029.	5.8	26
64	Ï€-Conjugated thiolate amplified spectrophotometry nitrite assay with improved sensitivity and accuracy. Chemical Communications, 2018, 54, 12178-12181.	4.1	26
65	Monodispersed Ag Nanoparticle in Layered Double Hydroxides as Matrix for Laser Desorption/Ionization Mass Spectrometry. ACS Applied Materials & Interfaces, 2018, 10, 44751-44759.	8.0	26
66	A novel acetone sensor utilizing cataluminescence on layered double oxide. Sensors and Actuators B: Chemical, 2014, 205, 82-87.	7.8	25
67	Spontaneous polarization switching and piezoelectric enhancement of PVDF through strong hydrogen bonds induced by layered double hydroxides. Chemical Communications, 2017, 53, 7933-7936.	4.1	25
68	Fabrication of Noncoplanar Molecule Aggregates with Inherent Porous Structures for Electrochemiluminescence Signal Amplification. Analytical Chemistry, 2017, 89, 10078-10084.	6.5	24
69	Structurally Ordered Catalyst-Amplified Chemiluminescence Signals. Analytical Chemistry, 2020, 92, 5456-5463.	6.5	24
70	Evolution of biogenic amine concentrations in foods through their induced chemiluminescence inactivation of layered double hydroxide nanosheet colloids. Biosensors and Bioelectronics, 2014, 60, 237-243.	10.1	23
71	Recent advances of plasmonic nanoparticle-based optical analysis in homogeneous solution and at the single-nanoparticle level. Analyst, The, 2020, 145, 4737-4752.	3.5	23
72	Significantly Enhanced Thermoelectric Properties of Organic–Inorganic Hybrids with a Periodically Ordered Structure. ACS Applied Materials & Interfaces, 2020, 12, 13371-13377.	8.0	23

#	Article	IF	CITATIONS
73	Polyethyleneimine as a novel desorbent for anionic organic dyes on layered double hydroxide surface. Journal of Colloid and Interface Science, 2015, 458, 315-322.	9.4	22
74	Hydrotalcite-assisted cataluminescence: A new approach for sensing mesityl oxide in aldol condensation of acetone. Sensors and Actuators B: Chemical, 2015, 207, 498-503.	7.8	22
75	Sensitive and Selective Carmine Acid Detection Based on Chemiluminescence Quenching of Layer Doubled Hydroxide–Luminol–H ₂ O ₂ System. ACS Omega, 2018, 3, 18836-18842.	3.5	22
76	Organo-Modified Montmorillonite Enhanced Chemiluminescence via Inactivation of Halide Counterions in a Micellar Solution. Journal of Physical Chemistry C, 2014, 118, 2851-2856.	3.1	21
77	Hydroxyl-triggered fluorescence for location of inorganic materials in polymer-matrix composites. Chemical Science, 2018, 9, 218-222.	7.4	21
78	Layered-nanomaterial-amplified chemiluminescence systems and their analytical applications. Analytical and Bioanalytical Chemistry, 2016, 408, 8731-8746.	3.7	20
79	Persistent generation of hydroxyl radicals in Tris–Co(<scp>ii</scp>) complex–H ₂ O ₂ systems for long-lasting multicolored chemical lights. Chemical Communications, 2019, 55, 679-682.	4.1	20
80	Disordered Assembly of Donors and Acceptors on Layered Double Hydroxides for High-Efficiency Chemiluminescence Resonance Energy Transfer. Analytical Chemistry, 2021, 93, 7724-7731.	6.5	20
81	Rapid Discrimination of Adsorbed Oxygen and Lattice Oxygen in Catalysts by the Cataluminescence Method. Analytical Chemistry, 2022, 94, 1382-1389.	6.5	20
82	Ag–O–Co Interface Modulation-Amplified Luminol Cathodic Electrogenerated Chemiluminescence. Analytical Chemistry, 2022, 94, 4813-4820.	6.5	20
83	Propanol-Triggered Luminescence for Rapid Screening of Crystal Facets in Noble Metal. Analytical Chemistry, 2019, 91, 4513-4519.	6.5	19
84	Three-Dimensional Visualization for Early-Stage Evolution of Polymer Aging. ACS Central Science, 2020, 6, 771-778.	11.3	19
85	Cationâ^'ï€ Interaction Triggered-Fluorescence of Clay Fillers in Polymer Composites for Quantification of Three-Dimensional Macrodispersion. Analytical Chemistry, 2017, 89, 12472-12479.	6.5	18
86	Sensitized chemiluminescence reaction between hydrogen peroxide and periodate of different types of Mn-doped ZnS quantum dots. Science Bulletin, 2010, 55, 3479-3484.	1.7	17
87	One-step enrichment and chemiluminescence detection of sodium dodecyl benzene sulfonate in river water using Mg–Al–carbonate layered double hydroxides. Talanta, 2014, 120, 268-273.	5.5	17
88	Hydrophobicity-induced prestaining for protein detection in polyacrylamide gel electrophoresis. Chemical Communications, 2016, 52, 2807-2810.	4.1	17
89	Efficient bacteria inactivation by ligand-induced continuous generation of hydroxyl radicals in Fenton-like reaction. Journal of Hazardous Materials, 2019, 369, 408-415.	12.4	17
90	Colorimetric detection of cephradine in pharmaceutical formulations via fluorosurfactant-capped gold nanoparticles. Talanta, 2010, 81, 698-702.	5.5	16

#	Article	IF	CITATIONS
91	Chemiluminescence as a Novel Indicator for Interactions of Surfactant–Polymer Mixtures at the Surface of Layered Double Hydroxides. Journal of Physical Chemistry C, 2014, 118, 2792-2798.	3.1	16
92	Aggregation-induced emission assembled ultrathin films for white light-emitting diodes. Chemical Communications, 2017, 53, 12676-12679.	4.1	15
93	Three-dimensional direct visualization of silica dispersion in polymer-based composites. Analyst, The, 2018, 143, 2090-2095.	3.5	15
94	Organo-modified layered double hydroxide-catalyzed Fenton-like ultra-weak chemiluminescence for specific sensing of vitamin B12 in egg yolks. Talanta, 2014, 129, 126-131.	5.5	14
95	A cataluminescence sensor with fast response to diethyl ether based on layered double oxide nanoparticles. Analytical and Bioanalytical Chemistry, 2016, 408, 8787-8793.	3.7	14
96	Surfactant-assisted algal flocculation <i>via</i> aggregation-induced emission with an ultralow critical micelle concentration. Green Chemistry, 2018, 20, 2290-2298.	9.0	14
97	Cationâ [~] ï€ Interaction Induced Excimer Formation: A New Strategy for Highâ€Efficiency Organic Solidâ€ S tate Luminescence. Advanced Optical Materials, 2020, 8, 2000125.	7.3	14
98	Electrochemiluminescence detection of reduced and oxidized glutathione ratio by quantum dot-layered double hydroxide film. Analyst, The, 2016, 141, 3305-3312.	3.5	13
99	Hydroxyl radical induced chemiluminescence of hyperbranched polyethyleneimine protected silver nanoclusters and its application in tea polyphenols detection. Analytical Methods, 2017, 9, 3114-3120.	2.7	13
100	Micelle-Mediated Chemiluminescence as an Indicator for Micellar Transitions. Analytical Chemistry, 2019, 91, 2652-2658.	6.5	13
101	Design of ratiometric monoaromatic fluorescence probe via modulating intramolecular hydrogen bonding: A case study of alkaline phosphatase sensing. Analytica Chimica Acta, 2021, 1143, 144-156.	5.4	13
102	On-line solid phase extraction of humic acid from environmental water and monitoring with flow-through chemiluminescence. Analyst, The, 2012, 137, 1824.	3.5	12
103	Micelle modified-carbon nanosphere enhanced chemiluminescence from reactive oxygen species for the detection of hydrogen peroxide. Analytical Methods, 2015, 7, 5667-5673.	2.7	12
104	Fluorescence visualization of interactions between surfactants and polymers. RSC Advances, 2016, 6, 88954-88958.	3.6	12
105	A RAD52 genetic variant located in a miRNA binding site is associated with glioma risk in Han Chinese. Journal of Neuro-Oncology, 2014, 120, 11-17.	2.9	11
106	A colorimetric aptasensor for the simple and rapid detection of human papillomavirus type 16 L1 proteins. Analyst, The, 2021, 146, 2712-2717.	3.5	11
107	The phosphorescence nanocomposite thin film with rich oxygen vacancy: Towards sensitive oxygen sensor. Chinese Chemical Letters, 2022, 33, 3977-3980.	9.0	11
108	Charge Neutralization Strategy to Construct Salt-Tolerant and Cell-Permeable Nanoprobes: Application in Ratiometric Sensing and Imaging of Intracellular pH. Analytical Chemistry, 2021, 93, 15159-15166.	6.5	11

#	Article	IF	CITATIONS
109	A new approach for bisphenol A detection employing fluorosurfactant-capped gold nanoparticle-amplified chemiluminescence from cobalt(II) and peroxymonocarbonate. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 128, 393-397.	3.9	10
110	Determination of alizarin red S based on layered double hydroxides-improved chemiluminescence from hydrogen peroxide and luminol. Analytical Methods, 2017, 9, 6468-6473.	2.7	10
111	Direct observation of adsorption kinetics on clays by cation–π interaction-triggered aggregation luminescence. Journal of Materials Chemistry C, 2018, 6, 13218-13224.	5.5	10
112	Oriented arrangement of simple monomers enabled by confinement: towards living supramolecular polymerization. Nature Communications, 2021, 12, 2596.	12.8	10
113	Improved sensitivity via layered-double-hydroxide-uniformity-dependent chemiluminescence. Analytical and Bioanalytical Chemistry, 2016, 408, 8779-8786.	3.7	9
114	In situ visualization of hydrophilic spatial heterogeneity inside microfluidic chips by fluorescence microscopy. Lab on A Chip, 2019, 19, 934-940.	6.0	9
115	Control of Multicolor and White Emission by Triplet Energy Transfer. Journal of Physical Chemistry A, 2021, 125, 4209-4215.	2.5	9
116	Electronic Metal–Support Interactions for Electrochemiluminescence Signal Amplification. Analytical Chemistry, 2021, 93, 11291-11297.	6.5	9
117	Catechin-inspired gold nanocluster nanoprobe for selective and ratiometric dopamine detection via forming azamonardine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 274, 121142.	3.9	9
118	Tris–Co(II)–H ₂ O ₂ System-Mediated Durative Hydroxyl Radical Generation for Efficient Anionic Azo Dye Degradation by Integrating Electrostatic Attraction. ACS Omega, 2019, 4, 21704-21711.	3.5	8
119	Electrochemiluminescence detection of oxygen vacancies in layered double hydroxides. Chemical Communications, 2022, 58, 423-426.	4.1	8
120	Chemiluminescence as a New Indicator for Monitoring Hydroxylated Intermediates in Persulfate-Based Advanced Oxidation Processes. Journal of Physical Chemistry C, 2019, 123, 21704-21712.	3.1	7
121	A novel homolateral and dicationic AIEgen for the sensitive detection of casein. Analyst, The, 2019, 144, 3635-3642.	3.5	7
122	Leukocyte Telomere Length-Related rs621559 and rs398652 Genetic Variants Influence Risk of HBV-Related Hepatocellular Carcinoma. PLoS ONE, 2014, 9, e110863.	2.5	7
123	Multi-step polymer degradation kinetics using activation energy-dependent cataluminescence. Green Chemistry, 2022, 24, 2423-2428.	9.0	7
124	Natural montmorillonite nanosheet colloid-catalyzed hydrogen peroxide ultra-weak chemiluminescence. RSC Advances, 2014, 4, 15377.	3.6	6
125	Highlights of analytical chemical luminescence and cataluminescence. Analytical and Bioanalytical Chemistry, 2016, 408, 8727-8729.	3.7	6
126	Nanosheet-Filled Polymer Film from Flow-Induced Coassembly: Multiscale Structure Visualization and Application. Langmuir, 2018, 34, 14204-14214.	3.5	6

#	Article	IF	CITATIONS
127	A triplet state energy transfer material design concept enables enhanced visualization applications. Journal of Materials Chemistry C, 2019, 7, 14170-14180.	5.5	6
128	Tailoring Spin–Orbit Coupling by Aligned Earth-Abundant Metals for Extending Lifetime of Charge-Transfer Excited State. Journal of Physical Chemistry C, 2019, 123, 30536-30544.	3.1	6
129	Novel Fluorescence Method for Determination of Spatial Interparticle Distance in Polymer Nanocomposites. Analytical Chemistry, 2020, 92, 7794-7799.	6.5	6
130	Three-Dimensional Fluorescent Imaging to Identify Multi-Paths in Polymer Aging. Analytical Chemistry, 2021, 93, 10301-10309.	6.5	6
131	Determination of IC ₅₀ values of anticancer drugs on cells by D ₂ O – single cell Raman spectroscopy. Chemical Communications, 2022, 58, 2355-2358.	4.1	6
132	Chemiluminescence behavior of sodium hydrogen carbonate in the potassium permanganate-hydrogen peroxide reaction. Science China Chemistry, 2010, 53, 1784-1792.	8.2	5
133	Rapid screening of the hydrogen bonding strength of radicals by electrochemiluminescent probes. Chemical Communications, 2019, 55, 5563-5566.	4.1	5
134	Measurement of Solubilization Location in Micelles Using Anchored Aggregationâ€Induced Emission Donors. Angewandte Chemie, 2020, 132, 12900-12905.	2.0	5
135	Chemiluminescence Resonance Energy Transfer Efficiency and Donor–Acceptor Distance: from Qualitative to Quantitative. Angewandte Chemie, 2021, 133, 13139-13144.	2.0	5
136	The Insolubility Problem of Organic Hole-Transport Materials Solved by Solvothermal Technology: Toward Solution-Processable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 7493-7503.	8.0	5
137	Dual emission of singlet and triplet states boost the sensitivity of pressure-sensing. Chinese Chemical Letters, 2021, 32, 2869-2872.	9.0	4
138	Enhanced photocatalytic performance of heterogeneous hydrotalcite by spontaneously polarized ferroelectric. Journal of Colloid and Interface Science, 2021, 600, 473-479.	9.4	4
139	Fluorescence monitoring of the degradation evolution of aliphatic polyesters. Chemical Communications, 2022, 58, 8818-8821.	4.1	4
140	Gold Nanocluster-Encapsulated Hyperbranched Polyethyleneimine for Selective and Ratiometric Dopamine Analyses by Enhanced Self-Polymerization. Frontiers in Chemistry, 0, 10, .	3.6	4
141	Substrate-Assisted Visualization of Surfactant Micelles via Transmission Electron Microscopy. Frontiers in Chemistry, 2019, 7, 242.	3.6	3
142	Mass Spectrometry Imaging of Low-Molecular-Weight Phenols Liberated from Plastics. Analytical Chemistry, 2021, 93, 13703-13710.	6.5	3
143	Steadyâ€State and Dynamic Bioanalysis using Carbon Quantum Dotâ€based Luminescence Probes. ChemNanoMat, 2022, 8,	2.8	3
144	Supramolecular layer: Toward resolving the conflict between rigidity and flexibility in design of pressure-enhanced luminescence molecule. Sensors and Actuators B: Chemical, 2018, 268, 519-528.	7.8	2

#	Article	IF	CITATIONS
145	A rapid screening method for thermal conductivity properties of thermal insulation materials by a thermochemiluminescence probe. Chemical Communications, 2020, 56, 12781-12784.	4.1	2
146	Large-scale visualization of the dispersion of liquid-exfoliated two-dimensional nanosheets. Chemical Communications, 2021, 57, 4303-4306.	4.1	2
147	Cationic AlEgen micelle-improved chemiluminescent H ₂ O ₂ assay by integrating reactant approach and CRET. Analytical Methods, 2022, 14, 1671-1677.	2.7	2
148	Polyamineâ€Assisted Rapid Gold Nanocluster Synthesis <i>via</i> Electrostatic Attractionâ€Facilitated Core Approaching. ChemistrySelect, 2022, 7, .	1.5	2
149	Fluorescence Technique Lighting the Particle Migration in Polymers. Macromolecules, 2022, 55, 5840-5848.	4.8	2
150	Back Cover: Solar RRL 5â^•2017. Solar Rrl, 2017, 1, 1770117.	5.8	0
151	Hydrophobic Interface Cages in Microemulsions: Concept and Experiment Using Tetraphenylethylene-based Double-tailed Surfactant. Chemical Research in Chinese Universities, 2021, 37, 116-122.	2.6	0
152	The Sensitive Optical pH Sensor Based on the Complex of Nanosheet and Carbon Dots. ChemistrySelect, 2022, 7, .	1.5	0
153	Design of a Temperature-Independent Luminescent Probe for Visualization of Ice-to-Liquid Transition at â~'129 °C. Journal of Physical Chemistry C, 2022, 126, 7556-7563.	3.1	0