
Mark E Meyerhoff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6147878/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemical generation of nitric oxide for medical applications. Electrochemical Science Advances, 2022, 2, e2100156.	2.8	5
2	<i>S</i> -Nitrosothiol-Impregnated Silicone Catheter for Colorimetric Sensing of Indole and <i>E. coli</i> : Toward On-Body Detection of Urinary Tract Infections. ACS Sensors, 2022, 7, 1712-1719.	7.8	9
3	Characterization of the impact of mixing and droplet volumes on the behavior of microfluidic ion-selective droptodes. Analyst, The, 2021, 146, 5095-5101.	3.5	0
4	Nitric Oxide Release for Enhanced Biocompatibility and Analytical Performance of Implantable Electrochemical Sensors. Electroanalysis, 2021, 33, 1997-2015.	2.9	6
5	Delivering nitric oxide with poly(n-butyl methacrylate) films doped with S-nitroso-N-acetylpenicillamine. Polymer, 2021, 228, 123943.	3.8	6
6	The Effects of the Combined Argatroban/Nitric Oxide-Releasing Polymer on Platelet Microparticle-Induced Thrombogenicity in Coated Extracorporeal Circuits. ASAIO Journal, 2021, 67, 573-582.	1.6	10
7	Comparison of Diazeniumdiolated Dialkylhexanediamines as Nitric Oxide Release Agents on Nonthrombogenicity in an Extracorporeal Circulation Model. ACS Applied Bio Materials, 2020, 3, 466-476.	4.6	5
8	Feedback-controlled photolytic gas phase nitric oxide delivery from S-nitrosothiol-doped silicone rubber films. Journal of Controlled Release, 2020, 318, 264-269.	9.9	7
9	Enhanced Hemocompatibility and <i>In Vivo</i> Analytical Accuracy of Intravascular Potentiometric Carbon Dioxide Sensors via Nitric Oxide Release. Analytical Chemistry, 2020, 92, 13641-13646.	6.5	8
10	Nitric Oxide-Releasing Insert for Disinfecting the Hub Region of Tunnel Dialysis Catheters. ACS Applied Materials & Interfaces, 2020, 12, 44475-44484.	8.0	10
11	Plasticizer-Free Thin-Film Sodium-Selective Optodes Inkjet-Printed on Transparent Plastic for Sweat Analysis. ACS Applied Materials & Interfaces, 2020, 12, 25616-25624.	8.0	21
12	Plasticizer-free and pH-independent ion-selective optode films based on a solvatochromic dye. Analytical Methods, 2020, 12, 2547-2550.	2.7	9
13	Studies of combined NO-eluting/CD47-modified polyurethane surfaces for synergistic enhancement of biocompatibility. Colloids and Surfaces B: Biointerfaces, 2020, 192, 111060.	5.0	8
14	Nitric Oxide Generation on Demand for Biomedical Applications via Electrocatalytic Nitrite Reduction by Copper BMPA- and BEPA-Carboxylate Complexes. ACS Catalysis, 2019, 9, 7746-7758.	11.2	30
15	Comparison of electrochemical nitric oxide detection methods with chemiluminescence for measuring nitrite concentration in food samples. Analytica Chimica Acta, 2019, 1077, 167-173.	5.4	36
16	Synthesis and nitric oxide releasing properties of novel fluoro <i>S</i> -nitrosothiols. Chemical Communications, 2019, 55, 401-404.	4.1	15
17	Controlled light-induced gas phase nitric oxide release from S-nitrosothiol-doped silicone rubber films. Nitric Oxide - Biology and Chemistry, 2019, 86, 31-37.	2.7	20
18	Polyion Detection via Allâ€solidâ€contact Paperâ€based Polyionâ€sensitive Polymeric Membrane Electrodes. Electroanalysis, 2019, 31, 1416-1420.	2.9	4

#	Article	IF	CITATIONS
19	Nitric oxide releasing two-part creams containing S-nitrosoglutathione and zinc oxide for potential topical antimicrobial applications. Nitric Oxide - Biology and Chemistry, 2019, 90, 1-9.	2.7	22
20	Ionophoreâ€Based Biphasic Chemical Sensing in Droplet Microfluidics. Angewandte Chemie - International Edition, 2019, 58, 8092-8096.	13.8	17
21	Ionophoreâ€Based Biphasic Chemical Sensing in Droplet Microfluidics. Angewandte Chemie, 2019, 131, 8176-8180.	2.0	9
22	Nitric oxide releasing poly(vinylidene fluoride-co-hexafluoropropylene) films using a fluorinated nitric oxide donor to greatly decrease chemical leaching. Acta Biomaterialia, 2019, 90, 112-121.	8.3	8
23	Portable Bluetooth Microsystem for Electrochemically Modulated Nitric Oxide-Releasing Catheters. , 2019, , .		Ο
24	Blood coagulation response and bacterial adhesion to biomimetic polyurethane biomaterials prepared with surface texturing and nitric oxide release. Acta Biomaterialia, 2019, 84, 77-87.	8.3	61
25	Colorimetric copper ion sensing in solution phase and on paper substrate based on catalytic decomposition of S-nitrosothiol. Analytica Chimica Acta, 2019, 1053, 155-161.	5.4	13
26	Performance of Amperometric Platinizedâ€Nafion Based Gas Phase Sensor for Determining Nitric Oxide (NO) Levels in Exhaled Human Nasal Breath. Electroanalysis, 2018, 30, 1610-1615.	2.9	7
27	Detection and Quantification of Polyquaterniums via Polyion-Sensitive Ion-Selective Optodes Inkjet Printed on Cellulose Paper. Analytical Sciences, 2018, 34, 45-50.	1.6	10
28	Nitric oxide-releasing semi-crystalline thermoplastic polymers: preparation, characterization and application to devise anti-inflammatory and bactericidal implants. Biomaterials Science, 2018, 6, 3189-3201.	5.4	24
29	Attenuation of thrombin-mediated fibrin formation <i>via</i> changes in fibrinogen conformation induced by reaction with <i>S</i> -nitroso- <i>N</i> -acetylpenicillamine, but not <i>S</i> -nitrosoglutathione. Journal of Materials Chemistry B, 2018, 6, 7954-7965.	5.8	3
30	Synthesis and characterization of a fluorinated <i>S</i> -nitrosothiol as the nitric oxide donor for fluoropolymer-based biomedical device applications. Journal of Materials Chemistry B, 2018, 6, 6142-6152.	5.8	14
31	Comparison of Copper(II)–Ligand Complexes as Mediators for Preparing Electrochemically Modulated Nitric Oxide-Releasing Catheters. ACS Applied Materials & Interfaces, 2018, 10, 25047-25055.	8.0	23
32	Advances in electrochemical and optical polyion sensing: A review. Sensors and Actuators B: Chemical, 2018, 272, 643-654.	7.8	23
33	Reduction of Thrombosis and Bacterial Infection via Controlled Nitric Oxide (NO) Release from <i>S</i> -Nitroso- <i>N</i> -acetylpenicillamine (SNAP) Impregnated CarboSil Intravascular Catheters. ACS Biomaterials Science and Engineering, 2017, 3, 349-359.	5.2	61
34	Inhibition of bacterial adhesion and biofilm formation by dual functional textured and nitric oxide releasing surfaces. Acta Biomaterialia, 2017, 51, 53-65.	8.3	66
35	Characterization and Quantification of Polyquaterniums via Single-Use Polymer Membrane-Based Polyion-Sensitive Electrodes. ACS Sensors, 2017, 2, 268-273.	7.8	9
36	Antimicrobial nitric oxide releasing surfaces based on S-nitroso-N-acetylpenicillamine impregnated polymers combined with submicron-textured surface topography. Biomaterials Science, 2017, 5, 1265-1278.	5.4	30

#	Article	IF	CITATIONS
37	Study of crystal formation and nitric oxide (NO) release mechanism from S-nitroso-N-acetylpenicillamine (SNAP)-doped CarboSil polymer composites for potential antimicrobial applications. Composites Part B: Engineering, 2017, 121, 23-33.	12.0	30
38	Portable Nitric Oxide (NO) Generator Based on Electrochemical Reduction of Nitrite for Potential Applications in Inhaled NO Therapy and Cardiopulmonary Bypass Surgery. Molecular Pharmaceutics, 2017, 14, 3762-3771.	4.6	26
39	Compatibility of Nitric Oxide Release with Implantable Enzymatic Clucose Sensors Based on Osmium (III/II) Mediated Electrochemistry. ACS Sensors, 2017, 2, 1262-1266.	7.8	16
40	Manual and Flow-Injection Detection/Quantification of Polyquaterniums via Fully Reversible Polyion-Sensitive Polymeric Membrane-Based Ion-Selective Electrodes. ACS Sensors, 2017, 2, 1505-1511.	7.8	10
41	An Ionophoreâ€Based Anionâ€5elective Optode Printed on Cellulose Paper. Angewandte Chemie - International Edition, 2017, 56, 11826-11830.	13.8	64
42	An Ionophoreâ€Based Anionâ€Selective Optode Printed on Cellulose Paper. Angewandte Chemie, 2017, 129, 11988-11992.	2.0	6
43	Nitric oxide release for improving performance of implantable chemical sensors – A review. Applied Materials Today, 2017, 9, 589-597.	4.3	21
44	Inkjet-Printed Paper-Based Colorimetric Polyion Sensor Using a Smartphone as a Detector. Analytical Chemistry, 2017, 89, 12334-12341.	6.5	41
45	Efficient Eradication of Mature Pseudomonas aeruginosa Biofilm via Controlled Delivery of Nitric Oxide Combined with Antimicrobial Peptide and Antibiotics. Frontiers in Microbiology, 2016, 7, 1260.	3.5	48
46	Attenuation of thrombosis and bacterial infection using dual function nitric oxide releasing central venous catheters in a 9 day rabbit model. Acta Biomaterialia, 2016, 44, 304-312.	8.3	59
47	Transport of Nitric Oxide (NO) in Various Biomedical grade Polyurethanes: Measurements and Modeling Impact on NO Release Properties of Medical Devices. ACS Biomaterials Science and Engineering, 2016, 2, 1483-1492.	5.2	23
48	Electrochemically Modulated Nitric Oxide Release From Flexible Silicone Rubber Patch: Antimicrobial Activity For Potential Wound Healing Applications. ACS Biomaterials Science and Engineering, 2016, 2, 1432-1435.	5.2	18
49	Detecting levels of polyquaternium-10 (PQ-10) via potentiometric titration with dextran sulphate and monitoring the equivalence point with a polymeric membrane-based polyion sensor. Analytical Methods, 2016, 8, 5806-5811.	2.7	9
50	Improved Hemocompatibility of Multilumen Catheters via Nitric Oxide (NO) Release from <i>S</i> -Nitroso- <i>N</i> -acetylpenicillamine (SNAP) Composite Filled Lumen. ACS Applied Materials & Interfaces, 2016, 8, 29270-29279.	8.0	45
51	Asymmetric Anionâ€selective Membrane Electrode for Determining Nitric Oxide Release Rates from Ppolymeric Films/Electrochemical Devices. Electroanalysis, 2016, 28, 277-281.	2.9	2
52	Recent advances in thromboresistant and antimicrobial polymers for biomedical applications: just say yes to nitric oxide (NO). Biomaterials Science, 2016, 4, 1161-1183.	5.4	197
53	Improved hemocompatibility of silicone rubber extracorporeal tubing via solvent swelling-impregnation of S-nitroso-N-acetylpenicillamine (SNAP) and evaluation in rabbit thrombogenicity model. Acta Biomaterialia, 2016, 37, 111-119.	8.3	64
54	The preparation and characterization of nitric oxide releasing silicone rubber materials impregnated with S-nitroso-tert-dodecyl mercaptan. Journal of Materials Chemistry B, 2016, 4, 422-430.	5.8	23

#	Article	IF	CITATIONS
55	The immobilization of a direct thrombin inhibitor to a polyurethane as a nonthrombogenic surface coating for extracorporeal circulation. Journal of Materials Chemistry B, 2016, 4, 2264-2272.	5.8	30
56	Biodegradable poly(lactic-co-glycolic acid) microspheres loaded with S-nitroso-N-acetyl-D-penicillamine for controlled nitric oxide delivery. Journal of Controlled Release, 2016, 225, 133-139.	9.9	48
57	Enhancement of Inducible Nitric Oxide Synthase Activity by Low Molecular Weight Peptides Derived from Protamine: A Potential Therapy for Chronic Rhinosinusitis. Molecular Pharmaceutics, 2015, 12, 2396-2405.	4.6	4
58	Thromboresistant/anti-biofilm catheters via electrochemically modulated nitric oxide release. Bioelectrochemistry, 2015, 104, 10-16.	4.6	45
59	Improved thromboresistance and analytical performance of intravascular amperometric glucose sensors using optimized nitric oxide release coatings. Chinese Chemical Letters, 2015, 26, 464-468.	9.0	20
60	Improved <i>in Vivo</i> Performance of Amperometric Oxygen (<i>P</i> O ₂) Sensing Catheters via Electrochemical Nitric Oxide Generation/Release. Analytical Chemistry, 2015, 87, 8067-8072.	6.5	29
61	Highly sensitive amperometric Pt–Nafion gas phase nitric oxide sensor: Performance and application in characterizing nitric oxide-releasing biomaterials. Analytica Chimica Acta, 2015, 887, 186-191.	5.4	10
62	Real-Time Monitoring of Critical Care Analytes in the Bloodstream with Chemical Sensors: Progress and Challenges. Annual Review of Analytical Chemistry, 2015, 8, 171-192.	5.4	52
63	Polyionâ€Sensitive Polymeric Membraneâ€Based Pulstrode as a Potentiometric Detector in Liquid Chromatography. Electroanalysis, 2015, 27, 1823-1828.	2.9	8
64	<i>>S</i> -Nitroso- <i>N</i> -acetylpenicillamine (SNAP) Impregnated Silicone Foley Catheters: A Potential Biomaterial/Device To Prevent Catheter-Associated Urinary Tract Infections. ACS Biomaterials Science and Engineering, 2015, 1, 416-424.	5.2	78
65	Origin of Low Detection Limit and High Selectivity of Roche Accuâ€Chek Test Strips that Enables Measurement of Tear Glucose Levels. Electroanalysis, 2015, 27, 670-676.	2.9	14
66	Origin of Long-Term Storage Stability and Nitric Oxide Release Behavior of CarboSil Polymer Doped with <i>S</i> -Nitroso- <i>N</i> -acetyl- <scp>d</scp> -penicillamine. ACS Applied Materials & Interfaces, 2015, 7, 22218-22227.	8.0	96
67	Paper-based plasticizer-free sodium ion-selective sensor with camera phone as a detector. Chemical Communications, 2015, 51, 15176-15179.	4.1	51
68	Reduction in thrombosis and bacterial adhesion with 7 day implantation of S-nitroso-N-acetylpenicillamine (SNAP)-doped Elast-eon E2As catheters in sheep. Journal of Materials Chemistry B, 2015, 3, 1639-1645.	5.8	85
69	Integration of molecular and enzymatic catalysts on graphene for biomimetic generation of antithrombotic species. Nature Communications, 2014, 5, 3200.	12.8	90
70	Polyion Selective Polymeric Membrane-Based Pulstrode as a Detector in Flow-Injection Analysis. Analytical Chemistry, 2014, 86, 4041-4046.	6.5	20
71	Electrochemically Modulated Nitric Oxide (NO) Releasing Biomedical Devices via Copper(II)-Tri(2-pyridylmethyl)amine Mediated Reduction of Nitrite. ACS Applied Materials & Interfaces, 2014, 6, 3779-3783.	8.0	54
72	Optimized polymeric film-based nitric oxide delivery inhibits bacterial growth in a mouse burn wound model. Acta Biomaterialia, 2014, 10, 4136-4142.	8.3	73

#	Article	IF	CITATIONS
73	A Nitric Oxide-Releasing Heparin Conjugate for Delivery of a Combined Antiplatelet/Anticoagulant Agent. Molecular Pharmaceutics, 2014, 11, 645-650.	4.6	33
74	Hemocompatibility comparison of biomedical grade polymers using rabbit thrombogenicity model for preparing nonthrombogenic nitric oxide releasing surfaces. Journal of Materials Chemistry B, 2014, 2, 1059-1067.	5.8	57
75	Polymeric optical sensors for selective and sensitive nitrite detection using cobalt(III) corrole and rhodium(III) porphyrin as ionophores. Analytica Chimica Acta, 2014, 843, 89-96.	5.4	42
76	Study of Cobalt(III) Corrole as the Neutral Ionophore for Nitrite and Nitrate Detection via Polymeric Membrane Electrodes. Electroanalysis, 2013, 25, 2579-2585.	2.9	32
77	Invitro and in vivo study of sustained nitric oxide release coating using diazeniumdiolate-doped poly(vinyl chloride) matrix with poly(lactide-co-glycolide) additive. Journal of Materials Chemistry B, 2013, 1, 3578.	5.8	58
78	The mediation of platelet quiescence by NO-releasing polymers via cGMP-induced serine 239 phosphorylation of vasodilator-stimulated phosphoprotein. Biomaterials, 2013, 34, 8086-8096.	11.4	19
79	Long-term nitric oxide release and elevated temperature stability with S-nitroso-N-acetylpenicillamine (SNAP)-doped Elast-eon E2As polymer. Biomaterials, 2013, 34, 6957-6966.	11.4	131
80	Amperometric Nitric Oxide Sensors with Enhanced Selectivity Over Carbon Monoxide via Platinum Oxide Formation Under Alkaline Conditions. Analytical Chemistry, 2013, 85, 10057-10061.	6.5	16
81	Reexamination of the Direct Electrochemical Reduction of <i>S</i> â€Nitrosothiols. Electroanalysis, 2013, 25, 914-921.	2.9	8
82	Electromodulated release of nitric oxide through polymer material from reservoir of inorganic nitrite salt. RSC Advances, 2012, 2, 6765.	3.6	16
83	Diazeniumdiolate-doped poly(lactic-co-glycolic acid)-based nitric oxide releasing films as antibiofilm coatings. Biomaterials, 2012, 33, 7933-7944.	11.4	68
84	Intravascular glucose/lactate sensors prepared with nitric oxide releasing poly(lactide-co-glycolide)-based coatings for enhanced biocompatibility. Biosensors and Bioelectronics, 2011, 26, 4276-4282.	10.1	37
85	Spectrophotometric determination of various polyanions with polymeric film optodes using microtiter plate reader. Analytica Chimica Acta, 2011, 699, 107-112.	5.4	10
86	The hemocompatibility of a nitric oxide generating polymer that catalyzes S-nitrosothiol decomposition in an extracorporeal circulation model. Biomaterials, 2011, 32, 5957-5969.	11.4	102
87	The attenuation of platelet and monocyte activation in a rabbit model of extracorporeal circulation by a nitric oxide releasing polymer. Biomaterials, 2010, 31, 2736-2745.	11.4	119
88	Reversible Detection of Heparin and Other Polyanions by Pulsed Chronopotentiometric Polymer Membrane Electrode. Analytical Chemistry, 2010, 82, 1612-1615.	6.5	81
89	Tailored synthesis of nitric oxide-releasing polyurethanes using O2-protected diazeniumdiolated chain extenders. Journal of Materials Chemistry, 2010, 20, 3107.	6.7	26
90	Salicylate Detection by Complexation with Iron(III) and Optical Absorbance Spectroscopy. An Undergraduate Quantitative Analysis Experiment. Journal of Chemical Education, 2008, 85, 1658.	2.3	31

#	Article	IF	CITATIONS
91	Nitric oxide-releasing/generating polymers for the development of implantable chemical sensors with enhanced biocompatibility. Talanta, 2008, 75, 642-650.	5.5	58
92	Organoditelluride-tethered polymers that spontaneously generate nitric oxide when in contact with fresh blood. Journal of Materials Chemistry, 2008, 18, 1784.	6.7	9
93	Photoinstability of S-Nitrosothiols during Sampling of Whole Blood: A Likely Source of Error and Variability in S-Nitrosothiol Measurements. Clinical Chemistry, 2008, 54, 916-918.	3.2	14
94	Effect of varying nitric oxide release to prevent platelet consumption and preserve platelet function in an in vivo model of extracorporeal circulation. Perfusion (United Kingdom), 2007, 22, 193-200.	1.0	66
95	Organoditelluride-mediated catalytic S-nitrosothiol decomposition. Journal of Materials Chemistry, 2007, 17, 1462.	6.7	20
96	In vitro platelet adhesion on polymeric surfaces with varying fluxes of continuous nitric oxide release. Journal of Biomedical Materials Research - Part A, 2007, 81A, 956-963.	4.0	43
97	Polymeric coatings that mimic the endothelium: Combining nitric oxide release with surface-bound active thrombomodulin and heparin. Biomaterials, 2007, 28, 4047-4055.	11.4	90
98	Catalytic generation of nitric oxide from S-nitrosothiols using immobilized organoselenium species. Biomaterials, 2007, 28, 19-27.	11.4	121
99	Determination of DNA and its binding to protamine using potentiometric polyion sensors. Journal of Electroanalytical Chemistry, 2007, 602, 138-141.	3.8	14
100	Improving Blood Compatibility of Intravascular Oxygen Sensors Via Catalytic Decomposition of S-Nitrosothiols to Generate Nitric Oxide In Situ. Sensors and Actuators B: Chemical, 2007, 121, 36-46.	7.8	18
101	Nitric Oxide Releasing Polyurethanes with Covalently Linked Diazeniumdiolated Secondary Amines. Biomacromolecules, 2006, 7, 987-994.	5.4	83
102	In Vivo Chemical Sensors: Tackling Biocompatibility. Analytical Chemistry, 2006, 78, 7370-7377.	6.5	139
103	Polymethacrylates with a Covalently Linked Cull–Cyclen Complex for the In Situ Generation of Nitric Oxide from Nitrosothiols in Blood. Angewandte Chemie - International Edition, 2006, 45, 2745-2748.	13.8	53
104	Polymers incorporating nitric oxide releasing/generating substances for improved biocompatibility of blood-contacting medical devices. Biomaterials, 2005, 26, 1685-1693.	11.4	315
105	Preparation and characterization of polymeric coatings with combined nitric oxide release and immobilized active heparin. Biomaterials, 2005, 26, 6506-6517.	11.4	105
106	Mediation ofin vivo glucose sensor inflammatory response via nitric oxide release. Journal of Biomedical Materials Research - Part A, 2005, 75A, 755-766.	4.0	90
107	Bis-diazeniumdiolates of Dialkyldiamines:  Enhanced Nitric Oxide Loading of Parent Diamines. Organic Letters, 2005, 7, 2813-2816.	4.6	12
108	Fluoride-Selective Optical Sensor Based on Aluminum(III)â^'Octaethylporphyrin in Thin Polymeric Film: Further Characterization and Practical Application. Analytical Chemistry, 2005, 77, 6719-6728.	6.5	46

#	Article	IF	CITATIONS
109	Nitric Oxide-Releasing Hydrophobic Polymers: Preparation, Characterization, and Potential Biomedical Applications. Free Radical Biology and Medicine, 2004, 37, 926-936.	2.9	100
110	Controlled Photoinitiated Release of Nitric Oxide from Polymer Films ContainingS-Nitroso-N-acetyl-dl-penicillamine Derivatized Fumed Silica Filler. Journal of the American Chemical Society, 2004, 126, 1348-1349.	13.7	115
111	Potentiometric Response Characteristics of Polycation-Sensitive Membrane Electrodes toward Poly(amidoamine) and Poly(propylenimine) Dendrimers. Analytical Chemistry, 2004, 76, 1474-1482.	6.5	23
112	Preparation and characterization of implantable sensors with nitric oxide release coatings. Microchemical Journal, 2003, 74, 277-288.	4.5	51
113	More Lipophilic Dialkyldiamine-Based Diazeniumdiolates:  Synthesis, Characterization, and Application in Preparing Thromboresistant Nitric Oxide Release Polymeric Coatings. Journal of Medicinal Chemistry, 2003, 46, 5153-5161.	6.4	114
114	Spontaneous Catalytic Generation of Nitric Oxide from S-Nitrosothiols at the Surface of Polymer Films Doped with Lipophilic Copper(II) Complex. Journal of the American Chemical Society, 2003, 125, 9552-9553.	13.7	94
115	Nitric Oxide-Releasing Fumed Silica Particles:Â Synthesis, Characterization, and Biomedical Application. Journal of the American Chemical Society, 2003, 125, 5015-5024.	13.7	176
116	In Vivo Biocompatibility and Analytical Performance of Intravascular Amperometric Oxygen Sensors Prepared with Improved Nitric Oxide-Releasing Silicone Rubber Coating. Analytical Chemistry, 2002, 74, 5942-5947.	6.5	93
117	Synthesis and Characterization of Polymethacrylate-Based Nitric Oxide Donors. Journal of the American Chemical Society, 2002, 124, 12182-12191.	13.7	90
118	Nitric Oxide-Releasing Fluorescence-Based Oxygen Sensing Polymeric Films. Analytical Chemistry, 2002, 74, 5937-5941.	6.5	34
119	Implantable chemical sensors for real-time clinical monitoring: progress and challenges. Current Opinion in Chemical Biology, 2002, 6, 633-641.	6.1	136
120	Nitric oxide releasing silicone rubbers with improved blood compatibility: preparation, characterization, and in vivo evaluation. Biomaterials, 2002, 23, 1485-1494.	11.4	165
121	Rotating Electrode Potentiometry:Â Lowering the Detection Limits of Nonequilibrium Polyion-Sensitive Membrane Electrodes. Analytical Chemistry, 2001, 73, 332-336.	6.5	69
122	Nonseparation Binding/Immunoassays Using Polycation-Sensitive Membrane Electrode Detection. Electroanalysis, 2001, 13, 276-283.	2.9	21
123	Determination of pentosan polysulfate and its binding to polycationic species using polyion-sensitive membrane electrodes. Analytica Chimica Acta, 2001, 432, 253-260.	5.4	26
124	Preparation and characterization of hydrophobic polymeric films that are thromboresistant via nitric oxide release. Biomaterials, 2000, 21, 9-21.	11.4	205
125	Ionophore-based membrane electrodes: new analytical concepts and non-classical response mechanisms. Analytica Chimica Acta, 2000, 416, 121-137.	5.4	96
126	Reduced platelet activation and thrombosis in extracorporeal circuits coated with nitric oxide release polymers. Critical Care Medicine, 2000, 28, 915-920.	0.9	144

#	Article	IF	CITATIONS
127	Origin of Non-Nernstian Anion Response Slopes of Metalloporphyrin-Based Liquid/Polymer Membrane Electrodes. Analytical Chemistry, 2000, 72, 5766-5773.	6.5	98
128	Improving the Thromboresistivity of Chemical Sensors via Nitric Oxide Release:Â Fabrication and in Vivo Evaluation of NO-Releasing Oxygen-Sensing Catheters. Analytical Chemistry, 2000, 72, 1119-1126.	6.5	119
129	Optical Detection of Polycations via Polymer Film-Modified Microtiter Plates:  Response Mechanism and Bioanalytical Applications. Analytical Chemistry, 2000, 72, 3142-3149.	6.5	25
130	Cystic Fibrosis Transmembrane Conductance Regulator. Journal of General Physiology, 1999, 114, 799-818.	1.9	104
131	More Biocompatible Electrochemical Sensors Using Nitric Oxide Release Polymers. Electroanalysis, 1999, 11, 681-686.	2.9	41
132	Catheter-type sensor for potentiometric monitoring of oxygen, pH and carbon dioxide. Biosensors and Bioelectronics, 1998, 13, 201-212.	10.1	63
133	Influence of Nonionic Surfactants on the Potentiometric Response of Ion-Selective Polymeric Membrane Electrodes Designed for Blood Electrolyte Measurements. Analytical Chemistry, 1998, 70, 1477-1488.	6.5	37
134	Shape-Selective Retention of Polycyclic Aromatic Hydrocarbons on Metalloprotoporphyrinâ^'Silica Phases:Â Effect of Metal Ion Center and Porphyrin Coverage. Analytical Chemistry, 1998, 70, 2523-2529.	6.5	35
135	Response Characteristics of Anion-Selective Polymer Membrane Electrodes Based on Gallium(III), Indium(III) and Thallium(III) Porphyrins Analytical Sciences, 1998, 14, 79-84.	1.6	111
136	Improved protamine-sensitive membrane electrode for monitoring heparin concentrations in whole blood via protamine titration§. Clinical Chemistry, 1998, 44, 606-613.	3.2	97
137	Thromboresistant Chemical Sensors Using Combined Nitric Oxide Release/Ion Sensing Polymeric Films. Journal of the American Chemical Society, 1997, 119, 2321-2322.	13.7	67
138	Photo-Cross-Linked Decyl Methacrylate Films for Electrochemical and Optical Polyion Probes. Analytical Chemistry, 1997, 69, 4092-4098.	6.5	22
139	Synthesis of N-acetylneuraminyl-α2,3(6)lactose-malate dehydrogenase conjugate for detecting sialic acid terminal groups on glycoproteins via homogeneous lectin-based enzyme-linked binding assay. Applied Biochemistry and Biotechnology, 1997, 68, 41-56.	2.9	6
140	Polyion-sensitive membrane electrodes for detecting phosphate-rich biological polyanions. Electroanalysis, 1997, 9, 1325-1330.	2.9	27
141	Electrochemical Assay of Proteinase Inhibitors Using Polycation-Sensitive Membrane Electrode Detection. Analytical Biochemistry, 1997, 250, 74-81.	2.4	26
142	Peer Reviewed: Polyion-Sensitive Membrane Electrodes for Biomedical Analysis. Analytical Chemistry, 1996, 68, 168A-175A.	6.5	108
143	Influence of Nonionic Surfactants on the Potentiometric Response of Hydrogen Ion-Selective Polymeric Membrane Electrodes. Analytical Chemistry, 1996, 68, 1623-1631.	6.5	43
144	Retention Behavior of Amino Acids and Peptides on Protoporphyrin-Silica Stationary Phases with Varying Metal Ion Centers. Analytical Chemistry, 1996, 68, 2818-2825.	6.5	58

#	Article	IF	CITATIONS
145	Mixed Potential Response Mechanism of Cobalt Electrodes toward Inorganic Phosphate. Analytical Chemistry, 1996, 68, 2022-2026.	6.5	106
146	Selective monitoring of peptidase activities with synthetic polypeptide substrates and polyionâ€sensitive membrane electrode detection. FASEB Journal, 1996, 10, 1621-1626.	0.5	32
147	Characterization of photopolymerized decyl methacrylate as a membrane matrix for ion-selective electrodes. Electroanalysis, 1996, 8, 1095-1100.	2.9	35
148	Polymer membrane-based polyion sensors: Development, response mechanism, and bioanalytical applications. Electroanalysis, 1995, 7, 823-829.	2.9	29
149	Potentiometric oxygen sensing with copper films: Response mechanism and analytical implications. Electroanalysis, 1995, 7, 1020-1026.	2.9	15
150	Immobilization of proteins on gold coated porous membranes via an activated self-assembled monolayer of thioctic acid. Mikrochimica Acta, 1995, 117, 195-206.	5.0	51
151	Optical Detection of Macromolecular Heparin via Selective Coextraction into Thin Polymeric Films. Analytical Chemistry, 1995, 67, 522-527.	6.5	34
152	Thrombogenic Properties of Untreated and Poly(ethylene oxide)-Modified Polymeric Matrixes Useful for Preparing Intraarterial Ion-Selective Electrodes. Analytical Chemistry, 1995, 67, 3108-3114.	6.5	110
153	Simplified dual-lumen catheter design for simultaneous potentiometric monitoring of carbon dioxide and pH. Analytical Chemistry, 1994, 66, 576-583.	6.5	47
154	Response Mechanism of Polymer Membrane-Based Potentiometric Polyion Sensors. Analytical Chemistry, 1994, 66, 2250-2259.	6.5	174
155	Simultaneous enzymatic/electrochemical determination of glucose andL-glutamine in hybridoma media by flow-injection analysis Biotechnology and Bioengineering, 1993, 41, 964-969.	3.3	23
156	Flow-injection potentiometric determination of creatinine in urine using sub-Nernstian linear response range. Electroanalysis, 1993, 5, 113-120.	2.9	17
157	Direct potentiometric membrane electrode measurements of heparin binding to macromolecules. Electroanalysis, 1993, 5, 719-724.	2.9	37
158	Electrochemical sensor for heparin: further characterization and bioanalytical applications. Analytical Chemistry, 1993, 65, 2078-2084.	6.5	130
159	Evaluation of Polyurethane-Based Membrane Matrices for Optical Ion-Selective Sensors. Analytical Letters, 1993, 26, 1519-1533.	1.8	11
160	Potentiometric Ion-, Gas-, and Bio-Selective Membrane Electrodes. Critical Reviews in Analytical Chemistry, 1992, 23, 163-186.	3.5	55
161	Heparin-responsive electrochemical sensor: a preliminary study. Analytical Chemistry, 1992, 64, 694-697.	6.5	157
162	Potentiometric anion response of poly (tetrakis(p-aminophenyl)porphyrin) film-modified electrodes. Electroanalysis, 1992, 4, 841-849.	2.9	40

#	Article	IF	CITATIONS
163	Flow-injection analysis with immobilized oxidase/peroxidase enzymes and fluoride electrode detection. Electroanalysis, 1990, 2, 525-531.	2.9	5
164	Measurement of ammonia and glutamine in cell culture media by gas sensing electrodes. Biotechnology Letters, 1989, 3, 217-222.	0.5	24
165	Enzyme electrode-based differential potentiometric cell with enhanced substrate sensitivity. Electroanalysis, 1989, 1, 205-211.	2.9	9
166	Enzyme-linked flow-injection immunoassay using immobilized secondary antibodies. Mikrochimica Acta, 1988, 96, 207-221.	5.0	27
167	Recent Advances in the Development and Analytical Applications of Biosensing Probes. CRC Critical Reviews in Analytical Chemistry, 1988, 20, 149-196.	1.8	130