Daniel L Priebbenow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6147304/publications.pdf

Version: 2024-02-01

32 papers 1,576 citations

331670 21 h-index 34 g-index

57 all docs

57 docs citations

57 times ranked

1407 citing authors

#	Article	IF	Citations
1	Acylsilanes: valuable organosilicon reagents in organic synthesis. Chemical Society Reviews, 2013, 42, 8540.	38.1	224
2	Recent advances in the Willgerodt–Kindler reaction. Chemical Society Reviews, 2013, 42, 7870.	38.1	136
3	Copperâ€Catalyzed Oxidative Crossâ€Coupling of Sulfoximines and Alkynes. Angewandte Chemie - International Edition, 2013, 52, 3478-3480.	13.8	117
4	Copper-Catalyzed Oxidative Decarboxylative Couplings of Sulfoximines and Aryl Propiolic Acids. Organic Letters, 2013, 15, 6155-6157.	4.6	96
5	<i>N</i> -Arylations of Sulfoximines with 2-Arylpyridines by Copper-Mediated Dual N–H/C–H Activation. Organic Letters, 2014, 16, 2661-2663.	4.6	90
6	Acylsilanes in Rhodium(III) atalyzed Directed Aromatic Câ€"H Alkenylations and Siloxycarbene Reactions with CC Double Bonds. Angewandte Chemie - International Edition, 2014, 53, 269-271.	13.8	84
7	Siliconâ€Derived Singlet Nucleophilic Carbene Reagents in Organic Synthesis. Advanced Synthesis and Catalysis, 2020, 362, 1927-1946.	4.3	74
8	Copperâ€Catalyzed Synthesis of αâ€Thioaryl Carbonyl Compounds Through SS and CC Bond Cleavage. Advanced Synthesis and Catalysis, 2013, 355, 2558-2563.	4.3	72
9	The Copperâ€Catalyzed Oxidative <i>N</i> à€Acylation of Sulfoximines. Advanced Synthesis and Catalysis, 2013, 355, 1490-1494.	4.3	64
10	Câ€"H Activation of Methyl Arenes in the MnO ₂ -Mediated Aroylation of <i>N</i> -Chlorosulfoximines. Organic Letters, 2014, 16, 1650-1652.	4.6	60
11	Photochemical Intermolecular Silylacylations of Electron-Deficient Internal Alkynes. Journal of Organic Chemistry, 2014, 79, 814-817.	3.2	47
12	Domino Heckâ^'Aza-Michael Reactions: Efficient Access to 1-Substituted Tetrahydro-β-carbolines. Journal of Organic Chemistry, 2010, 75, 1787-1790.	3.2	43
13	Mild Copperâ€Mediated Direct Oxidative Crossâ€Coupling of 1,3,4â€Oxadiazoles with Polyfluoroarenes by Using Dioxygen as Oxidant. Chemistry - A European Journal, 2013, 19, 3302-3305.	3.3	39
14	Exploring the Reactivity of $\langle i \rangle N \langle i \rangle$ -Alkynylated Sulfoximines: [2 + 2]-Cycloadditions. Organic Letters, 2013, 15, 5397-5399.	4.6	38
15	A general approach to N-heterocyclic scaffolds using domino Heck–aza-Michael reactions. Organic and Biomolecular Chemistry, 2011, 9, 1508.	2.8	35
16	Insights into the Stability of Siloxy Carbene Intermediates and Their Corresponding Oxocarbenium lons. Journal of Organic Chemistry, 2019, 84, 11813-11822.	3.2	35
17	Intramolecular photochemical $[2 + 1]$ -cycloadditions of nucleophilic siloxy carbenes. Chemical Science, 2022, 13, 3273-3280.	7.4	31
18	Asymmetric induction in domino Heck-aza-Michael reactions. Tetrahedron Letters, 2012, 53, 1468-1471.	1.4	23

#	Article	IF	Citations
19	Regio- and Stereoselective Iodoacyloxylations of Alkynes. Journal of Organic Chemistry, 2015, 80, 4412-4418.	3.2	23
20	Fluorinated Ketones as Trapping Reagents for Visible-Light-Induced Singlet Nucleophilic Carbenes. Organic Letters, 2021, 23, 2783-2789.	4.6	22
21	A Oneâ€Pot, Threeâ€Component Approach to Functionalised Tetrahydroisoquinolines Using Domino Heck–azaâ€Michael Reactions. European Journal of Organic Chemistry, 2011, 2011, 1632-1635.	2.4	21
22	Discovery of Benzoylsulfonohydrazides as Potent Inhibitors of the Histone Acetyltransferase KAT6A. Journal of Medicinal Chemistry, 2019, 62, 7146-7159.	6.4	21
23	Iron atalyzed Acylative Dealkylation of <i>N</i> â€Alkylsulfoximines. European Journal of Organic Chemistry, 2015, 2015, 5594-5602.	2.4	19
24	Substituted Pyridazin-3(2 <i>H</i>)-ones as Highly Potent and Biased Formyl Peptide Receptor Agonists. Journal of Medicinal Chemistry, 2019, 62, 5242-5248.	6.4	19
25	The rhodium-catalysed synthesis of pyrrolidinone-substituted (trialkylsilyloxy)acrylic esters. RSC Advances, 2013, 3, 10318.	3.6	18
26	New synthetic approaches towards analogues of bedaquiline. Organic and Biomolecular Chemistry, 2016, 14, 9622-9628.	2.8	16
27	Discovery of Potent and Fast-Acting Antimalarial Bis-1,2,4-triazines. Journal of Medicinal Chemistry, 2021, 64, 4150-4162.	6.4	14
28	The Synthesis of Chiral Benzothiazine and Thiazinoquinoline Derivatives. European Journal of Organic Chemistry, 2015, 2015, 3338-3343.	2.4	12
29	Discovery of Acylsulfonohydrazide-Derived Inhibitors of the Lysine Acetyltransferase, KAT6A, as Potent Senescence-Inducing Anti-Cancer Agents. Journal of Medicinal Chemistry, 2020, 63, 4655-4684.	6.4	9
30	Acyl silane directed Cp*Rh(<scp>iii</scp>)-catalysed alkylation/annulation reactions. Chemical Communications, 2021, 57, 7938-7941.	4.1	7
31	Synthesis and evaluation of pyridine-derived bedaquiline analogues containing modifications at the A-ring subunit. RSC Medicinal Chemistry, 2021, 12, 943-959.	3.9	5
32	The Disubstitution of Acetals to Prepare δ,δâ€Bis(aryl) βâ€Keto Esters. European Journal of Organic Chemistry, 2013, 2013, 3965-3969.	2.4	3