
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6147276/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Fine Size Selection of Brightly Luminescent Water-Soluble Ag–In–S and Ag–In–S/ZnS Quantum Dots. Journal of Physical Chemistry C, 2017, 121, 9032-9042.	1.5	131
2	Copper-surface-mediated synthesis of acetylenic carbon-rich nanofibers for active metal-free photocathodes. Nature Communications, 2018, 9, 1140.	5.8	115
3	Non-stoichiometry effect and disorder in Cu2ZnSnS4 thin films obtained by flash evaporation: Raman scattering investigation. Acta Materialia, 2014, 65, 412-417.	3.8	100
4	Resonant Raman scattering study of CdSe nanocrystals passivated with CdS and ZnS. Nanotechnology, 2007, 18, 285701.	1.3	89
5	Origin and Dynamics of Highly Efficient Broadband Photoluminescence of Aqueous Glutathione-Capped Size-Selected Ag–In–S Quantum Dots. Journal of Physical Chemistry C, 2018, 122, 13648-13658.	1.5	88
6	Size effects on Raman spectra of small CdSe nanoparticles in polymer films. Nanotechnology, 2008, 19, 305707.	1.3	86
7	Nonresonant Surface-Enhanced Raman Scattering of ZnO Quantum Dots with Au and Ag Nanoparticles. ACS Nano, 2013, 7, 3420-3426.	7.3	74
8	Size-Dependent Optical Properties of Colloidal ZnO Nanoparticles Charged by Photoexcitation. Journal of Physical Chemistry C, 2010, 114, 220-225.	1.5	73
9	Giant gap-plasmon tip-enhanced Raman scattering of MoS ₂ monolayers on Au nanocluster arrays. Nanoscale, 2018, 10, 2755-2763.	2.8	70
10	Spectral features above LO phonon frequency in resonant Raman scattering spectra of small CdSe nanoparticles. Journal of Applied Physics, 2009, 106, .	1.1	67
11	Optically induced structural transformation in disordered kesterite Cu2ZnSnS4. JETP Letters, 2013, 98, 255-258.	0.4	66
12	Phonon Raman spectra of colloidal CdTe nanocrystals: effect of size, non-stoichiometry and ligand exchange. Nanoscale Research Letters, 2011, 6, 79.	3.1	64
13	Synthesis and Characterization of White-Emitting CdS Quantum Dots Stabilized with Polyethylenimine. Journal of Physical Chemistry C, 2010, 114, 22478-22486.	1.5	63
14	Raman- and IR-Active Phonons in CdSe/CdS Core/Shell Nanocrystals in the Presence of Interface Alloying and Strain. Journal of Physical Chemistry C, 2013, 117, 18225-18233.	1.5	60
15	Growth and spectroscopic characterization of CdSe nanoparticles synthesized from CdCl2 and Na2SeSO3 in aqueous gelatine solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 290, 304-309.	2.3	59
16	Vibrational spectroscopy of compound semiconductor nanocrystals. Journal Physics D: Applied Physics, 2018, 51, 503001.	1.3	57
17	Stable Dispersion of lodide-Capped PbSe Quantum Dots for High-Performance Low-Temperature Processed Electronics and Optoelectronics. Chemistry of Materials, 2015, 27, 4328-4337.	3.2	56
18	Spectral and luminescent properties of ZnO–SiO ₂ core–shell nanoparticles with size-selected ZnO cores. RSC Advances, 2014, 4, 63393-63401.	1.7	52

#	Article	IF	CITATIONS
19	The influence of shell parameters on phonons in core–shell nanoparticles: a resonant Raman study. Nanotechnology, 2009, 20, 365704.	1.3	51
20	Luminescence and photoelectrochemical properties of size-selected aqueous copper-doped Ag–In–S quantum dots. RSC Advances, 2018, 8, 7550-7557.	1.7	51
21	Raman and Infrared Phonon Spectra of Ultrasmall Colloidal CdS Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 19492-19497.	1.5	50
22	Hybrid N-Butylamine-Based Ligands for Switching the Colloidal Solubility and Regimentation of Inorganic-Capped Nanocrystals. ACS Nano, 2017, 11, 1559-1571.	7.3	49
23	Raman Scattering Study of Cu ₃ SnS ₄ Colloidal Nanocrystals. Journal of Physical Chemistry C, 2014, 118, 27554-27558.	1.5	48
24	Morphology-induced phonon spectra of CdSe/CdS nanoplatelets: core/shell vs. core–crown. Nanoscale, 2016, 8, 17204-17212.	2.8	48
25	Non-stoichiometric Cu–In–S@ZnS nanoparticles produced in aqueous solutions as light harvesters for liquid-junction photoelectrochemical solar cells. RSC Advances, 2016, 6, 100145-100157.	1.7	48
26	Optimization of porous silicon preparation technology for SERS applications. Applied Surface Science, 2010, 256, 3369-3373.	3.1	45
27	Near-Infrared Cu–In–Se-Based Colloidal Nanocrystals via Cation Exchange. Chemistry of Materials, 2018, 30, 2607-2617.	3.2	45
28	Tuning the reduction and conductivity of solution-processed graphene oxide by intense pulsed light. Carbon, 2016, 102, 236-244.	5.4	44
29	Resonant Raman study of phonons in high-quality colloidal CdTe nanoparticles. Applied Physics Letters, 2009, 94, .	1.5	43
30	Chloride and Indiumâ€Chlorideâ€Complex Inorganic Ligands for Efficient Stabilization of Nanocrystals in Solution and Doping of Nanocrystal Solids. Advanced Functional Materials, 2016, 26, 2163-2175.	7.8	43
31	Raman spectroscopy of Cu-Sn-S ternary compound thin films prepared by the low-cost spray-pyrolysis technique. Applied Optics, 2016, 55, B158.	0.9	41
32	Electrochemical Tuning of Localized Surface Plasmon Resonance in Copper Chalcogenide Nanocrystals. Journal of Physical Chemistry C, 2017, 121, 18244-18253.	1.5	41
33	Surface- and tip-enhanced resonant Raman scattering from CdSe nanocrystals. Physical Chemistry Chemical Physics, 2015, 17, 21198-21203.	1.3	40
34	"Green―Aqueous Synthesis and Advanced Spectral Characterization of Size-Selected Cu2ZnSnS4 Nanocrystal Inks. Scientific Reports, 2018, 8, 13677.	1.6	39
35	Nature of some features in Raman spectra of hydroxyapatite-containing materials. Journal of Raman Spectroscopy, 2016, 47, 726-730.	1.2	38
36	Annealing-induced structural transformation of gelatin-capped Se nanoparticles. Solid State Communications, 2008, 145, 288-292.	0.9	37

#	Article	IF	CITATIONS
37	Origin of the Broadband Photoluminescence of Pristine and Cu ⁺ /Ag ⁺ -Doped Ultrasmall CdS and CdSe/CdS Quantum Dots. Journal of Physical Chemistry C, 2018, 122, 10267-10277.	1.5	37
38	Raman characterization of Cu ₂ ZnSnS ₄ nanocrystals: phonon confinement effect and formation of Cu _x S phases. RSC Advances, 2018, 8, 30736-30746.	1.7	37
39	Nanostructured Silver Substrates With Stable and Universal SERS Properties: Application to Organic Molecules and Semiconductor Nanoparticles. Nanoscale Research Letters, 2010, 5, 403-409.	3.1	36
40	Cleculonic scructure, optical properties, and fattice dynamics of orthorhombic <mml:math< td=""><td>1.1</td><td>36</td></mml:math<>	1.1	36
41	xmlns:mml="http://www.w3.org/1998/Math/Math/ML"> <mml:mrow><mml:msub><mml:mi mathvariant="bold">Cu<mml:mn>2</mml:mn></mml:mi </mml:msub><mml:msub><mml:mi mathvariant="bold">CdGeS<mml:mn>4</mml:mn></mml:mi </mml:msub></mml:mrow> and <mml:r xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi< td=""><td>nath</td><td>35</td></mml:mi<></mml:mrow></mml:r 	nath	35
42	Declaration in the kesterite Cu ₂ 2nGeS ₄ semiconductor: polarized Raman spectroscopy and first-principle calculations. RSC Advances, 2016, 6, 13278-13285.	1.7	35
43	Alloyed CuInS2–ZnS nanorods: synthesis, structure and optical properties. CrystEngComm, 2015, 17, 5634-5643.	1.3	34
44	The role of a plasmonic substrate on the enhancement and spatial resolution of tip-enhanced Raman scattering. Faraday Discussions, 2019, 214, 309-323.	1.6	33
45	Brightly Luminescent Core/Shell Nanoplatelets with Continuously Tunable Optical Properties. Advanced Optical Materials, 2019, 7, 1801478.	3.6	33
46	Enhanced Raman scattering of ZnO nanocrystals in the vicinity of gold and silver nanostructured surfaces. Optics Express, 2016, 24, A168.	1.7	32
47	Structure of Biocompatible Coatings Produced from Hydroxyapatite Nanoparticles by Detonation Spraying. Nanoscale Research Letters, 2015, 10, 464.	3.1	30
48	Structural and optical characterization of colloidal Se nanoparticles prepared via the acidic decomposition of sodium selenosulfate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 320, 169-174.	2.3	28
49	Photochemical formation and photoelectrochemical properties of TiO2/Sb2S3 heterostructures. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 303-304, 8-16.	2.0	28
50	Probing the structure of CuInS 2 -ZnS core-shell and similar nanocrystals by Raman spectroscopy. Applied Surface Science, 2017, 395, 24-28.	3.1	28
51	Colloidal ZnO nanocrystals in dimethylsulfoxide: a new synthesis, optical, photo- and electroluminescent properties. Nanotechnology, 2014, 25, 075601.	1.3	27
52	Fermi resonance in the phonon spectra of quaternary chalcogenides of the type Cu ₂ ZnGeS ₄ . Journal of Physics Condensed Matter, 2016, 28, 065401.	0.7	27
53	Phonon Spectra of Small Colloidal II-VI Semiconductor Nanocrystals. International Journal of Spectroscopy, 2012, 2012, 1-6.	1.4	26
54	Optical properties of quaternary kesterite-type Cu ₂ Zn(Sn _{1â^x} Ge _x)S ₄ crystalline alloys: Raman scattering, photoluminescence and first-principle calculations. RSC Advances, 2016, 6, 67756-67763.	1.7	25

#	Article	IF	CITATIONS
55	Raman and X-ray Photoemission Identification of Colloidal Metal Sulfides as Potential Secondary Phases in Nanocrystalline Cu ₂ ZnSnS ₄ Photovoltaic Absorbers. ACS Applied Nano Materials, 2020, 3, 5706-5717.	2.4	25
56	<scp>R</scp> aman scattering in orthorhombic Cu <scp>I</scp> n <scp>S</scp> ₂ nanocrystals. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 195-199.	0.8	24
57	Raman study of self-assembled SiGe nanoislands grown at low temperatures. Nanotechnology, 2005, 16, 1464-1468.	1.3	23
58	Optical study of CdS- and ZnS-passivated CdSe nanocrystals in gelatin films. Journal of Physics Condensed Matter, 2007, 19, 386237.	0.7	23
59	A spectroscopic and photochemical study of Ag+-, Cu2+-, Hg2+-, and Bi3+-doped Cd Zn1â^'S nanoparticles. Journal of Colloid and Interface Science, 2010, 345, 515-523.	5.0	23
60	Synthesis and luminescent properties of ultrasmall colloidal CdS nanoparticles stabilized by Cd(II) complexes with ammonia and mercaptoacetate. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	22
61	Crystal structure and vibrational properties of Cu ₂ ZnSiSe ₄ quaternary semiconductor. Physica Status Solidi (B): Basic Research, 2016, 253, 1808-1815.	0.7	22
62	A new route to very stable water-soluble ultra-small core/shell CdSe/CdS quantum dots. Nano Structures Nano Objects, 2018, 13, 146-154.	1.9	22
63	Tuning the adhesion between polyimide substrate and MWCNTs/epoxy nanocomposite by surface treatment. Applied Surface Science, 2017, 422, 420-429.	3.1	21
64	Multifunctional Magneto-Plasmonic Fe3O4/Au Nanocomposites: Approaching Magnetophoretically-Enhanced Photothermal Therapy. Nanomaterials, 2021, 11, 1113.	1.9	21
65	Improved Electrochemical Behavior of Amorphous Carbon-Coated Copper/CNT Composites as Negative Electrode Material and Their Energy Storage Mechanism. Journal of the Electrochemical Society, 2016, 163, A1247-A1253.	1.3	20
66	Nanocrystalline TiO2/Au films: Photocatalytic deposition of gold nanocrystals and plasmonic enhancement of Raman scattering from titania. Materials Science in Semiconductor Processing, 2015, 37, 3-8.	1.9	19
67	Synthesis, optical properties, and photochemical activity of zinc-indium-sulfide nanoplates. RSC Advances, 2015, 5, 89577-89585.	1.7	19
68	Morphology, optical, and photoelectrochemical properties of electrodeposited nanocrystalline ZnO films sensitized with Cd x Zn1â^'x S nanoparticles. Journal of Materials Science, 2013, 48, 7764-7773.	1.7	18
69	Flexible plasmonic graphene oxide/heterostructures for dual-channel detection. Analyst, The, 2019, 144, 3297-3306.	1.7	18
70	Nanosecond and microsecond decay of photogenerated charges in CdxZn1â^'x S nanoparticles. Theoretical and Experimental Chemistry, 2007, 43, 297-305.	0.2	17
71	Photocatalytic H 2 production from aqueous solutions of hydrazine and its derivatives in the presence of nitric-acid-activated graphitic carbon nitride. Catalysis Today, 2017, 284, 229-235.	2.2	17
72	Insights into different photoluminescence mechanisms of binary and ternary aqueous nanocrystals from the temperature dependence: A case study of CdSe and Ag-In-S. Journal of Luminescence, 2019, 215, 116630.	1.5	17

#	Article	IF	CITATIONS
73	Phonon Spectra of Strongly Luminescent Nonstoichiometric Ag–In–S, Cu–In–S, and Hg–In–S Nanocrystals of Small Size. Journal of Physical Chemistry C, 2020, 124, 15511-15522.	1.5	17
74	Characterization of semiconductor core–shell nanoparticles by resonant Raman scattering and photoluminescence spectroscopy. Applied Surface Science, 2008, 255, 725-727.	3.1	16
75	Resonant Raman spectroscopy of confined and surface phonons in CdSeâ€capped CdS nanoparticles. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 2043-2046.	0.8	16
76	Heterostructured Bismuth Telluride Selenide Nanosheets for Enhanced Thermoelectric Performance. Small Science, 2021, 1, 2000021.	5.8	16
77	Ultra-small aqueous glutathione-capped Ag–In–Se quantum dots: luminescence and vibrational properties. RSC Advances, 2020, 10, 42178-42193.	1.7	16
78	Mercury-indium-sulfide nanocrystals: A new member of the family of ternary in based chalcogenides. Journal of Chemical Physics, 2019, 151, 144701.	1.2	15
79	Theoretical and experimental investigations of single- and multilayer structures with SiGe nanoislands. Materials Science and Engineering C, 2003, 23, 1027-1031.	3.8	14
80	Many particle approach to resonance Raman scattering in crystals: Strong electron–phonon interaction and multi-phonon processes. Chemical Physics, 2011, 388, 57-68.	0.9	14
81	Hydrogen-induced <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>s</mml:mi> <mml:msup> <mml:n rehybridization in epitaxial silicene. Physical Review B, 2017, 96, .</mml:n </mml:msup></mml:mrow></mml:math 	ni>p ≭./ mml:	mi ≵4 mml:mn
82	CdZnS quantum dots formed by the Langmuir–Blodgett technique. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, 04D109.	0.6	13
83	Resonant surface-enhanced Raman scattering by optical phonons in a monolayer of CdSe nanocrystals on Au nanocluster arrays. Applied Surface Science, 2016, 370, 410-417.	3.1	13
84	Experimental Studies and Modeling of "Starlike―Plasmonic Nanostructures for SERS Application. Physica Status Solidi (B): Basic Research, 2019, 256, 1800280.	0.7	13
85	In-doped As2Se3 thin films studied by Raman and X-ray photoelectron spectroscopies. Applied Surface Science, 2019, 471, 943-949.	3.1	13
86	Iron(III) Î ² -diketonates: CVD precursors for iron oxide film formation. Inorganica Chimica Acta, 2019, 487, 1-8.	1.2	13
87	Photoelectrochemical and Raman characterization of nanocrystalline CdS grown on ZnO by successive ionic layer adsorption and reaction method. Thin Solid Films, 2014, 562, 56-62.	0.8	12
88	Raman study of flash-lamp annealed aqueous Cu ₂ ZnSnS ₄ nanocrystals. Beilstein Journal of Nanotechnology, 2019, 10, 222-227.	1.5	12
89	Laserâ€Induced Formation of CdS Crystallites in Cdâ€Doped Amorphous Arsenic Sulfide Thin Films. Physica Status Solidi (B): Basic Research, 2019, 256, 1800298.	0.7	12
90	Spectroscopic Study of Phytosynthesized Ag Nanoparticles and Their Activity as SERS Substrate. Chemosensors, 2022, 10, 129.	1.8	12

#	Article	IF	CITATIONS
91	Optical studies of CdSe/HgSe and CdSe/Ag2Se core/shell nanoparticles embedded in gelatin. Journal of Physics Condensed Matter, 2008, 20, 455203.	0.7	11
92	Surface-Enhanced Infrared Absorption by Optical Phonons in Nanocrystal Monolayers on Au Nanoantenna Arrays. Journal of Physical Chemistry C, 2017, 121, 5779-5786.	1.5	11
93	Work Function and Conductivity of Inkjet-Printed Silver Layers: Effect of Inks and Post-treatments. Journal of Electronic Materials, 2018, 47, 2135-2142.	1.0	11
94	Structural and optical study of Zn-doped As2Se3 thin films: Evidence for photoinduced formation of ZnSe nanocrystallites. AIP Advances, 2019, 9, .	0.6	11
95	Voltageâ€Controlled Dielectric Function of Bilayer Graphene. Advanced Optical Materials, 2020, 8, 2000861.	3.6	11
96	Thin films of Cu2ZnSnS4 for solar cells: optical and structural properties. Functional Materials, 2013, 20, 186-191.	0.4	11
97	Optical and photoelectrical properties of GeSi nanoislands. Semiconductor Science and Technology, 2007, 22, 326-329.	1.0	10
98	Vibrational Raman spectra of CdS <i>_x</i> Se _{1â€<i>x</i>} magicâ€size nanocrystals. Physica Status Solidi - Rapid Research Letters, 2011, 5, 250-252.	1.2	10
99	Anharmonic interactions and temperature effects in Raman spectra of Si nanostructures. Solid State Communications, 2014, 195, 39-42.	0.9	10
100	Spectral and photophysical properties of size-selected ZnO nanocrystals coupled to single-layer carbon nitride sheets. FlatChem, 2017, 2, 38-48.	2.8	10
101	Atomic Layer Deposition of Titanium Phosphate from Titanium Tetrachloride and Triethyl Phosphate onto Carbon Fibers. Advanced Materials Interfaces, 2018, 5, 1800423.	1.9	10
102	Magnesium β-ketoiminates as CVD precursors for MgO formation. RSC Advances, 2018, 8, 19668-19678.	1.7	10
103	Green synthesis of silver nanoparticles using aqueous extract of hot chili pepper fruits and its antimicrobial activity against Pseudomonas aeruginosa. Ukrainian Biochemical Journal, 2021, 93, 102-110.	0.1	10
104	Temperature-dependent resonant Raman scattering study of core/shell nanocrystals. Journal of Physics: Conference Series, 2007, 92, 012045.	0.3	9
105	Charge Carrier Transport, Trapping, and Recombination in PEDOT:PSS/n-Si Solar Cells. ACS Applied Energy Materials, 2019, 2, 5983-5991.	2.5	9
106	Resonant plasmon enhancement of light emission from CdSe/CdS nanoplatelets on Au nanodisk arrays. Journal of Chemical Physics, 2020, 153, 164708.	1.2	9
107	Raman and X-ray Photoelectron Spectroscopic Study of Aqueous Thiol-Capped Ag-Zn-Sn-S Nanocrystals. Materials, 2021, 14, 3593.	1.3	9
108	Self-assembly of semiconductor quantum dots with porphyrin chromophores: Energy relaxation processes and biomedical applications. Journal of Molecular Structure, 2021, 1244, 131239.	1.8	9

#	Article	IF	CITATIONS
109	Preparation and spectral properties of high-efficiency luminescent polyethylenimine-stabilized CdS quantum dots. Theoretical and Experimental Chemistry, 2010, 46, 233-238.	0.2	8
110	Dynamics of the radiative recombination of charge carriers in CdS nanoparticles stabilized with polyethyleneimine. Theoretical and Experimental Chemistry, 2010, 46, 273-278.	0.2	8
111	Preparation and optical properties of polyethyleneimine-stabilized colloidal CdSe and CdS x Se1–x quantum dots. Theoretical and Experimental Chemistry, 2011, 46, 416-421.	0.2	8
112	Surface-enhanced Raman scattering by colloidal CdSe nanocrystal submonolayers fabricated by the Langmuir–Blodgett technique. Beilstein Journal of Nanotechnology, 2015, 6, 2388-2395.	1.5	8
113	Nanoantenna structures for the detection of phonons in nanocrystals. Beilstein Journal of Nanotechnology, 2018, 9, 2646-2656.	1.5	7
114	Experimental and theoretical study of Raman scattering spectra of ternary chalcogenides Tl ₄ Hgl ₆ , Tl ₄ HgBr ₆ , and TlHgCl ₃ . Journal of Raman Spectroscopy, 2018, 49, 1840-1848.	1.2	7
115	Temperature Driven Plasmon-Exciton Coupling in Thermoresponsive Dextran-Graft-PNIPAM/Au Nanoparticle/CdTe Quantum Dots Hybrid Nanosystem. Plasmonics, 2021, 16, 1137-1150.	1.8	7
116	Colloidal Cu-Zn-Sn-Te Nanocrystals: Aqueous Synthesis and Raman Spectroscopy Study. Nanomaterials, 2021, 11, 2923.	1.9	7
117	In situphotoluminescence/Raman study of reversible photo-induced structural transformation of nc-Si. Materials Research Express, 2014, 1, 045905.	0.8	6
118	Chemical vapor deposition of ruthenium-based layers by a single-source approach. Journal of Materials Chemistry C, 2016, 4, 2319-2328.	2.7	6
119	Resonant tip-enhanced Raman scattering by CdSe nanocrystals on plasmonic substrates. Nanoscale Advances, 2020, 2, 5441-5449.	2.2	6
120	Structure and vibrational spectra of ReSe 2 nanoplates. Journal of Raman Spectroscopy, 2020, 51, 1305-1314.	1.2	6
121	Raman study of laser-induced formation of Il–VI nanocrystals in zinc-doped As–S(Se) films. Applied Nanoscience (Switzerland), 2020, 10, 4831-4837.	1.6	6
122	Colloidal Cu2ZnSnS4-based and Ag-doped Nanocrystals: Synthesis and Raman Spectroscopy Study. Physics and Chemistry of Solid State, 2021, 22, 260-268.	0.3	6
123	Potency of phytosynthesized silver nanoparticles from Lathraea squamaria as anticandidal agent and wheat seeds germination enhancer. , 2022, 77, 2715-2724.		6
124	Modification by thermal annealing of the luminescent characteristics of CdSe quantum dots in gelatin films. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 1779-1782.	0.8	5
125	B ₂ O ₃ /SiO ₂ /Phenolic Resin Hybrid Materials Produced by Simultaneous Twin Polymerization of Spiromonomers. Macromolecular Chemistry and Physics, 2018, 219, 1700487.	1.1	5
126	Raman Scattering Study of Mixed Quaternary Ag <i>_x</i> Ga <i>_x</i> Ge _{1â^'<i>x</i>} Se ₂ (0.167 â‰ ¤ €‰ <i>x</i> â‰ ¤ €‰0.333) Crystals. Physica Status Solidi (B): Basic Research, 2018, 255, 2	0.7 1700230.	5

#	Article	IF	CITATIONS
127	Synthesis, Characterization, and Electrochemistry of Diferrocenyl Î ² -Diketones, -Diketonates, and Pyrazoles. Molecules, 2020, 25, 4476.	1.7	5
128	Photoinduced Enhancement of Photoluminescence of Colloidal II-VI Nanocrystals in Polymer Matrices. Nanomaterials, 2020, 10, 2565.	1.9	5
129	Many particle approach to excitons in crystals: Electron–electron and electron–phonon interactions. Journal of Molecular Structure, 2010, 976, 205-214.	1.8	4
130	Freeâ€standing graphene monolayers in carbonâ€based composite obtained from SiC: Raman diagnostics. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 1674-1678.	0.8	4
131	Deposition of an organic–inorganic hybrid material onto carbon fibers via the introduction of furfuryl alcohol into the atomic layer deposition process of titania and subsequent pyrolysis. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	0.9	4
132	Room-Temperature Electron Paramagnetic Resonance Study of a Copper-Related Defect in Cu ₂ ZnSnS ₄ Colloidal Nanocrystals. Journal of Physical Chemistry C, 2021, 125, 9923-9929.	1.5	4
133	Ternary CdS _{1–<i>x</i>} Se _{<i>x</i>} nanocrystals formed in Cdâ€doped As–Se–S films due to photoenhanced diffusion during microâ€Raman measurement. Journal of Raman Spectroscopy, 2021, 52, 821-832.	1.2	4
134	Exciton-phonon interaction in crystals and quantum size structures. Journal of Physics: Conference Series, 2007, 92, 012061.	0.3	3
135	Resonant Raman scattering in ultrafine CdSxSe1â~'x colloidal particles. Bulletin of the Lebedev Physics Institute, 2011, 38, 48-51.	0.1	3
136	Transformation of epitaxial NiMnGa/InGaAs nanomembranes grown on GaAs substrates into freestanding microtubes. RSC Advances, 2016, 6, 72568-72574.	1.7	3
137	Raman and Infrared Phonon Spectra of Novel Nonlinear Optical Materials PbGa ₂ GeS ₆ and PbGa ₂ GeSe ₆ : Experiment and Theory. Physica Status Solidi (B): Basic Research, 2020, 257, 1900700.	0.7	3
138	Surface-mediated twin polymerisation of 2,2′-spirobi[4 <i>H</i> -1,3,2-benzodioxasiline] on multi-walled carbon nanotubes, polyacrylonitrile particles and copper particles. Materials Advances, 2022, 3, 3925-3937.	2.6	3
139	Experimental and theoretical study of the influence of growth temperature on composition in self-assembled SiGe QD's. Materials Science and Engineering C, 2005, 25, 565-569.	3.8	2
140	Theoretical and experimental Raman study of superlattices with GeSi quantum dots. European Physical Journal B, 2010, 74, 409-413.	0.6	2
141	Photoelectrochemical Properties of Titanium Dioxide Nanoheterostructures with Low-Dimensional Cadmium Selenide Particles. Theoretical and Experimental Chemistry, 2016, 52, 152-162.	0.2	2
142	Plasmon-Enhanced Near-Field Optical Spectroscopy of Multicomponent Semiconductor Nanostructures. Optoelectronics, Instrumentation and Data Processing, 2019, 55, 488-494.	0.2	2
143	Copper-Content Dependent Structural and Electrical Properties of CZTS Films Formed by "Green― Colloidal Nanocrystals. Electronic Materials, 2022, 3, 136-153.	0.9	2
144	Effect of surface energy minima on the shape of self-induced SiGe nanoislands. Physica Status Solidi (B): Basic Research, 2005, 242, 2833-2837.	0.7	1

#	Article	IF	CITATIONS
145	Structure and spectral-optical characteristics of Se, Se/CdS, and Se/Cd0.5Zn0.5S nanoparticles, stabilized in polymer-containing media. Theoretical and Experimental Chemistry, 2007, 43, 28-34.	0.2	1
146	Raman scattering in crystal multilayer structures with quantum dots: Theoretical and experimental study. Superlattices and Microstructures, 2010, 48, 85-105.	1.4	1
147	Long-Term Stability of Optical Properties of Colloidal CdSe Nanocrystals in Polymer Matrices. International Journal of Nanoscience, 2019, 18, 1940052.	0.4	1
148	Improved rectification and transport properties of hybrid PEDOT:PSS/Ge/Si heterojunctions with Ge nanoclusters. Journal of Applied Physics, 2020, 128, 085503.	1.1	1
149	Synthesis and Optical Properties of CdSe Nanocrystals Obtained from CdCl2 and Na2SeSO3 Aqueous Solutions in the Presence of Gelatine. , 0, , .		0
150	Strain relaxation in thin SiGe epilayers doped with carbon. Nuclear Instruments & Methods in Physics Research B, 2006, 253, 27-30.	0.6	0
151	The correlation between the surface-energy minima and the shape of self-induced SiGe nanoislands. Semiconductors, 2006, 40, 385-390.	0.2	0
152	Spectral and photochemical characteristics of CdSe nanoparticles stabilized in polymer-containing media. Theoretical and Experimental Chemistry, 2006, 42, 162-168.	0.2	0
153	Optical studies of the evolution of the core/shell interface in CdSe―and CdSâ€based core/shell nanostructures with a narrowâ€gap shell. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 402-406.	0.8	0
154	Raman scattering for probing semiconductor nanostructures: From nanocrystal arrays towards a single nanocrystal. , 2013, , .		0
155	NON-RESONANT ENHANCED RAMAN SCATTERING OF LIGHT BY ZnO NANOCRYSTALS NEAR SILVER AND GOLD COLLOIDAL NANOPARTICLES. , 2013, , .		0
156	Surfaces, Interfaces, and Nanostructures: Spectroscopic Characterization and Applications. Physica Status Solidi (B): Basic Research, 2019, 256, 1900027.	0.7	0
157	Analysis of scarlet elf cup (Sarcoscypha coccinea) carotenoids in vivo by Raman spectroscopy. Journal of Raman Spectroscopy, 2021, 52, 600-607.	1.2	0
158	Fermi resonance in a molecule adsorbed on plasmonic metal film. Journal of Raman Spectroscopy, 2021, 52, 815-820.	1.2	0
159	OPTICAL PROPERTIES OF NANOSIZED ZINC OXIDE OBTAINED BY ELECTROCHEMICAL METHOD. Scientific Bulletin of the Uzhhorod University Series «Chemistry», 2021, 45, .	0.0	0
160	Raman Scattering in Superlattices with Ge Quantum Dots. Ukrainian Journal of Physics, 2015, 60, 1224-1233.	0.1	0
161	ĐŸĐ¾Ñ€Ñ–Đ²Đ½ÑĐ½Đ½Ñ•ĐµÑ"еĐ⁰Ñ,Ñ–Đ² ĐºĐ¾Đ»Đ¾Ñ–ĐƊ½Đ¾Đ3Đ¾ Ñ€Đ¾Đ∙҇Đ,Đ½Ñƒ ĐºĐ²Đ°ł	мÂÑð,о	Đ²Đ,Ñ Ñ,∂
162	Optical Properties and Lattice Dynamics of Pure and Sâ€Alloyed Cu–Zn–Sn–Te Semiconductors: Firstâ€Principles Calculations and Raman Scattering. Physica Status Solidi (B): Basic Research, 0, , 2100618.	0.7	0