
Günter Blobel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6147193/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Allosteric modulation of nucleoporin assemblies by intrinsically disordered regions. Science Advances, 2019, 5, eaax1836.	10.3	12
2	Electron microscopy of Chaetomium pom152 shows the assembly of ten-bead string. Cell Discovery, 2018, 4, 56.	6.7	14
3	Structure of the 80S Ribosome from <i>Saccharomyces cerevisiae</i> –tRNA-Ribosome and Subunit-Subunit Interactions. journal of hand surgery Asian-Pacific volume, The, 2018, , 286-299.	0.4	0
4	Architecture of the Protein-Conducting Channel Associated with the Translating 80S Ribosome. journal of hand surgery Asian-Pacific volume, The, 2018, , 274-285.	0.4	0
5	Alignment of Conduits for the Nascent Polypeptide Chain in the Ribosome-Sec61 Complex. journal of hand surgery Asian-Pacific volume, The, 2018, , 228-231.	0.4	1
6	Human TRPML1 channel structures in open and closed conformations. Nature, 2017, 550, 366-370.	27.8	109
7	3.3 à structure of Niemann–Pick C1 protein reveals insights into the function of the C-terminal luminal domain in cholesterol transport. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9116-9121.	7.1	86
8	Structural and biochemical analyses of the DEAD-box ATPase Sub2 in association with THO or Yra1. ELife, 2017, 6, .	6.0	35
9	Clues to the mechanism of cholesterol transfer from the structure of NPC1 middle lumenal domain bound to NPC2. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10079-10084.	7.1	153
10	Structure of human Niemann–Pick C1 protein. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8212-8217.	7.1	137
11	A glutamate/aspartate switch controls product specificity in a protein arginine methyltransferase. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2068-2073.	7.1	44
12	Hooking She3p onto She2p for myosin-mediated cytoplasmic mRNA transport. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 142-147.	7.1	5
13	Allosteric Regulation in Gating the Central Channel of the Nuclear Pore Complex. Cell, 2015, 161, 1361-1373.	28.9	40
14	Ordered Regions of Channel Nucleoporins Nup62, Nup54, and Nup58 Form Dynamic Complexes in Solution. Journal of Biological Chemistry, 2015, 290, 18370-18378.	3.4	18
15	Structure of an integral membrane sterol reductase from Methylomicrobium alcaliphilum. Nature, 2015, 517, 104-107.	27.8	48
16	Vesiculoviral matrix (M) protein occupies nucleic acid binding site at nucleoporin pair (Rae1•Nup98). Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9127-9132.	7.1	48
17	Carrier-Independent Nuclear Import of the Transcription Factor PU.1 Blood, 2004, 104, 3561-3561.	1.4	1

18 Proteomics for the pore. Nature, 2000, 403, 835-836.

27.8 34

Günter Blobel

#	Article	IF	CITATIONS
19	Structure of the nuclear transport complex karyopherin-β2–Ran˙GppNHp. Nature, 1999, 399, 230-237.	27.8	332
20	Identification of proteins associated with plastoglobules isolated from pea (Pisum sativum L.) chloroplasts. Planta, 1999, 208, 107-113.	3.2	107
21	The GTP-binding protein Ran/TC4 is required for protein import into the nucleus. Nature, 1993, 365, 661-663.	27.8	759
22	Identification of a receptor for protein import into mitochondria. Nature, 1990, 347, 444-449.	27.8	123
23	Isolation and characterization of the gene for a yeast mitochondrial import receptor. Nature, 1990, 347, 488-491.	27.8	82
24	Identification of a receptor for protein import into chloroplasts and its localization to envelope contact zones. Nature, 1988, 331, 232-237.	27.8	210
25	70K heat shock related proteins stimulate protein translocation into microsomes. Nature, 1988, 332, 805-810.	27.8	1,311
26	How proteins move across the endoplasmic reticulum membrane. Hepatology, 1987, 7, 26S-29S.	7.3	7
27	In vitro synthesized bacterial outer membrane protein is integrated into bacterial inner membranes but translocated across microsomal membranes. Nature, 1986, 323, 71-73.	27.8	26
28	Bovine opsin has more than one signal sequence. Nature, 1985, 318, 338-343.	27.8	198
29	The receptor for transepithelial transport of IgA and IgM contains multiple immunoglobulin-like domains. Nature, 1984, 308, 37-43.	27.8	518
30	Primary structure and genomic organization of the histidine-rich protein of the malaria parasite Plasmodium lophurae. Nature, 1984, 312, 616-620.	27.8	91
31	Role of signal recognition particle in the membrane assembly of Sindbis viral glycoproteins. FEBS Journal, 1984, 140, 499-502.	0.2	41
32	INTRACELLULAR PROTEIN TOPOGENESIS. Biochemical Society Transactions, 1981, 9, 85P-85P.	3.4	0
33	Co-translational membrane integration of calcium pump protein without signal sequence cleavage. Nature, 1981, 292, 87-88.	27.8	70
34	Secretion requires a cytoplasmically disposed sulphydryl of the RER membrane. Nature, 1980, 286, 174-176.	27.8	28
35	Chicken ovalbumin contains an internal signal sequence. Nature, 1979, 281, 117-121.	27.8	223
36	Transfer of Proteins across Membranes. Biosynthesis in vitro of Pretrypsinogen and Trypsinogen by Cell Fractions of Canine Pancreas. FEBS Journal, 1978, 82, 593-599.	0.2	66

#	Article	IF	CITATIONS
37	The role of organelles in the chemical modification of the primary translation products of secretory proteins. FEBS Letters, 1976, 72, 215-226.	2.8	120