
Eva Hellström-Lindberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6146984/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood, 2009, 114, 937-951.	1.4	3,864
2	Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncology, The, 2009, 10, 223-232.	10.7	2,404
3	Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood, 2013, 122, 3616-3627.	1.4	1,562
4	Azacitidine Prolongs Overall Survival Compared With Conventional Care Regimens in Elderly Patients With Low Bone Marrow Blast Count Acute Myeloid Leukemia. Journal of Clinical Oncology, 2010, 28, 562-569.	1.6	886
5	International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood, 2022, 140, 1200-1228.	1.4	814
6	Diagnosis and treatment of primary myelodysplastic syndromes in adults: recommendations from the European LeukemiaNet. Blood, 2013, 122, 2943-2964.	1.4	567
7	Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. Blood, 2011, 118, 6239-6246.	1.4	457
8	A randomized phase 3 study of lenalidomide versus placebo in RBC transfusion-dependent patients with Low-/Intermediate-1-risk myelodysplastic syndromes with del5q. Blood, 2011, 118, 3765-3776.	1.4	424
9	<i>TP53</i> Mutations in Low-Risk Myelodysplastic Syndromes With del(5q) Predict Disease Progression. Journal of Clinical Oncology, 2011, 29, 1971-1979.	1.6	424
10	A validated decision model for treating the anaemia of myelodysplastic syndromes with erythropoietin + granulocyte colony-stimulating factor: significant effects on quality of life. British Journal of Haematology, 2003, 120, 1037-1046.	2.5	404
11	Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nature Medicine, 2020, 26, 1549-1556.	30.7	372
12	Pseudouridylation of tRNA-Derived Fragments Steers Translational Control in Stem Cells. Cell, 2018, 173, 1204-1216.e26.	28.9	332
13	Efficacy of erythropoietin in the myelodysplastic syndromes: a metaâ€analysis of 205 patients from 17 studies. British Journal of Haematology, 1995, 89, 67-71.	2.5	310
14	Erythroid response to treatment with G-CSF plus erythropoietin for the anaemia of patients with myelodysplastic syndromes: proposal for a predictive model. British Journal of Haematology, 1997, 99, 344-351.	2.5	294
15	Diagnosis and classification of myelodysplastic syndrome: International Working Group on Morphology of myelodysplastic syndrome (IWGM-MDS) consensus proposals for the definition and enumeration of myeloblasts and ring sideroblasts. Haematologica, 2008, 93, 1712-1717.	3.5	281
16	Myelodysplastic Syndromes Are Propagated by Rare and Distinct Human Cancer Stem Cells InÂVivo. Cancer Cell, 2014, 25, 794-808.	16.8	272
17	Erythropoietin and Granulocyte-Colony Stimulating Factor Treatment Associated With Improved Survival in Myelodysplastic Syndrome. Journal of Clinical Oncology, 2008, 26, 3607-3613.	1.6	270

18 Molecular International Prognostic Scoring System for Myelodysplastic Syndromes. , 2022, 1, .

259

Eva HellstrĶm-Lindberg

#	Article	IF	CITATIONS
19	Persistent Malignant Stem Cells in del(5q) Myelodysplasia in Remission. New England Journal of Medicine, 2010, 363, 1025-1037.	27.0	236
20	Lenalidomide inhibits the malignant clone and up-regulates the SPARC gene mapping to the commonly deleted region in 5q- syndrome patients. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11406-11411.	7.1	230
21	Long-term outcome of treatment of anemia in MDS with erythropoietin and G-CSF. Blood, 2005, 106, 803-811.	1.4	200
22	Combining gene mutation with gene expression data improves outcome prediction in myelodysplastic syndromes. Nature Communications, 2015, 6, 5901.	12.8	196
23	TP53 mutation status divides myelodysplastic syndromes with complex karyotypes into distinct prognostic subgroups. Leukemia, 2019, 33, 1747-1758.	7.2	195
24	<i>SF3B1</i> -mutant MDS as a distinct disease subtype: a proposal from the International Working Group for the Prognosis of MDS. Blood, 2020, 136, 157-170.	1.4	195
25	Evaluating Variant Calling Tools for Non-Matched Next-Generation Sequencing Data. Scientific Reports, 2017, 7, 43169.	3.3	185
26	Safety and Efficacy of Romiplostim in Patients With Lower-Risk Myelodysplastic Syndrome and Thrombocytopenia. Journal of Clinical Oncology, 2010, 28, 437-444.	1.6	178
27	Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations. Blood, 2018, 132, 1225-1240.	1.4	168
28	Lung transplantation in telomerase mutation carriers with pulmonary fibrosis. European Respiratory Journal, 2014, 44, 178-187.	6.7	161
29	Involvement and functional impairment of the CD34+CD38â^'Thy-1+ hematopoietic stem cell pool in myelodysplastic syndromes with trisomy 8. Blood, 2002, 100, 259-267.	1.4	153
30	Aberrant splicing and defective mRNA production induced by somatic spliceosome mutations in myelodysplasia. Nature Communications, 2018, 9, 3649.	12.8	140
31	The WHO classification of MDS does make a difference. Blood, 2004, 103, 3265-3270.	1.4	137
32	Complete Remission with Reduction of High-Risk Clones following Haploidentical NK-Cell Therapy against MDS and AML. Clinical Cancer Research, 2018, 24, 1834-1844.	7.0	136
33	Molecular and clinical features of refractory anemia with ringed sideroblasts associated with marked thrombocytosis. Blood, 2009, 114, 3538-3545.	1.4	135
34	Granulocyte colony-stimulating factor inhibits spontaneous cytochrome c release and mitochondria-dependent apoptosis of myelodysplastic syndrome hematopoietic progenitors. Blood, 2003, 101, 1080-1086.	1.4	122
35	p53 protein expression independently predicts outcome in patients with lower-risk myelodysplastic syndromes with del(5q). Haematologica, 2014, 99, 1041-1049.	3.5	116
36	Morphological changes and apoptosis in bone marrow from patients with myelodysplastic syndromes treated with granulocyte-CSF and erythropoietin. Leukemia Research, 1997, 21, 415-425.	0.8	113

#	Article	IF	CITATIONS
37	The Role of the Iron Transporter ABCB7 in Refractory Anemia with Ring Sideroblasts. PLoS ONE, 2008, 3, e1970.	2.5	113
38	Clonal heterogeneity in the 5q- syndrome: p53 expressing progenitors prevail during lenalidomide treatment and expand at disease progression. Haematologica, 2009, 94, 1762-1766.	3.5	99
39	Integrative Genomics Identifies the Molecular Basis of Resistance to Azacitidine Therapy in Myelodysplastic Syndromes. Cell Reports, 2017, 20, 572-585.	6.4	99
40	Aberrant mitochondrial iron distribution and maturation arrest characterize early erythroid precursors in low-risk myelodysplastic syndromes. Blood, 2005, 106, 247-253.	1.4	94
41	The transporter ABCB7 is a mediator of the phenotype of acquired refractory anemia with ring sideroblasts. Leukemia, 2013, 27, 889-896.	7.2	89
42	A predictive model for the clinical response to low dose ara-C: a study of 102 patients with myelodysplastic syndromes or acute leukaemia. British Journal of Haematology, 1992, 81, 503-511.	2.5	77
43	Patients with del(5q) MDS who fail to achieve sustained erythroid or cytogenetic remission after treatment with lenalidomide have an increased risk for clonal evolution and AML progression. Annals of Hematology, 2010, 89, 365-374.	1.8	74
44	Validation of the revised international prognostic scoring system (<scp>IPSS</scp> â€R) in patients with lowerâ€risk myelodysplastic syndromes: a report from the prospective European LeukaemiaNet <scp>MDS</scp> (<scp>EUMDS</scp>) registry. British Journal of Haematology, 2015, 170, 372-383.	2.5	72
45	<i>Ex Vivo</i> Expanded Adaptive NK Cells Effectively Kill Primary Acute Lymphoblastic Leukemia Cells. Cancer Immunology Research, 2017, 5, 654-665.	3.4	71
46	The U2AF1S34F mutation induces lineage-specific splicing alterations in myelodysplastic syndromes. Journal of Clinical Investigation, 2017, 127, 2206-2221.	8.2	69
47	Recommended Guidelines for Validation, Quality Control, and Reporting of <i>TP53</i> Variants in Clinical Practice. Cancer Research, 2017, 77, 1250-1260.	0.9	68
48	SF3B1-initiating mutations in MDS-RSs target lymphomyeloid hematopoietic stem cells. Blood, 2017, 130, 881-890.	1.4	66
49	Health-related quality of life in lower-risk MDS patients compared with age- and sex-matched reference populations: a European LeukemiaNet study. Leukemia, 2018, 32, 1380-1392.	7.2	66
50	Gene expression and risk of leukemic transformation in myelodysplasia. Blood, 2017, 130, 2642-2653.	1.4	64
51	Antithymocyte globulin and cyclosporine A as combination therapy for low-risk non-sideroblastic myelodysplastic syndromes. Haematologica, 2006, 91, 667-70.	3.5	60
52	The Medalist Trial: Results of a Phase 3, Randomized, Double-Blind, Placebo-Controlled Study of Luspatercept to Treat Anemia in Patients with Very Low-, Low-, or Intermediate-Risk Myelodysplastic Syndromes (MDS) with Ring Sideroblasts (RS) Who Require Red Blood Cell (RBC) Transfusions. Blood, 2018, 132, 1-1.	1.4	57
53	Quality of life, physical function and MRI T2* in elderly low-risk MDS patients treated to a haemoglobin level of ≥120 g/L with darbepoetin alfa ± filgrastim or erythrocyte transfusions. Europ Journal of Haematology, 2011, 87, 244-252.	16313	56
54	Clinical effect of increasing doses of lenalidomide in high-risk myelodysplastic syndrome and acute myeloid leukemia with chromosome 5 abnormalities. Haematologica, 2011, 96, 963-971.	3.5	52

#	Article	IF	CITATIONS
55	Myelodysplastic syndromes: moving towards personalized management. Haematologica, 2020, 105, 1765-1779.	3.5	52
56	Nordic Guidelines for Germline Predisposition to Myeloid Neoplasms in Adults: Recommendations for Genetic Diagnosis, Clinical Management and Follow-up. HemaSphere, 2019, 3, e321.	2.7	51
57	Supportive Care and Use of Hematopoietic Growth Factors in Myelodysplastic Syndromes. Seminars in Hematology, 2008, 45, 14-22.	3.4	49
58	Pseudouridine-modified tRNA fragments repress aberrant protein synthesis and predict leukaemic progression in myelodysplastic syndrome. Nature Cell Biology, 2022, 24, 299-306.	10.3	47
59	Identification of Gene Expression–Based Prognostic Markers in the Hematopoietic Stem Cells of Patients With Myelodysplastic Syndromes. Journal of Clinical Oncology, 2013, 31, 3557-3564.	1.6	45
60	Comprehensive mapping of the effects of azacitidine on DNA methylation, repressive/permissive histone marks and gene expression in primary cells from patients with MDS and MDS-related disease. Oncotarget, 2017, 8, 28812-28825.	1.8	42
61	Somatic mutations in lymphocytes in patients with immune-mediated aplastic anemia. Leukemia, 2021, 35, 1365-1379.	7.2	41
62	Aberrant splicing of genes involved in haemoglobin synthesis and impaired terminal erythroid maturation in <i><scp>SF</scp>3B1</i> mutated refractory anaemia with ring sideroblasts. British Journal of Haematology, 2015, 171, 478-490.	2.5	37
63	Mutations in histone modulators are associated with prolonged survival during azacitidine therapy. Oncotarget, 2016, 7, 22103-22115.	1.8	37
64	Antiapoptotic Role of Growth Factors in the Myelodysplastic Syndromes: Concordance Between In vitro and In vivo Observations. Clinical Cancer Research, 2005, 11, 6291-6299.	7.0	35
65	Labile plasma iron levels predict survival in patients with lower-risk myelodysplastic syndromes. Haematologica, 2018, 103, 69-79.	3.5	35
66	Impact of red blood cell transfusion dose density on progression-free survival in patients with lower-risk myelodysplastic syndromes. Haematologica, 2020, 105, 632-639.	3.5	35
67	Progression in patients with low- and intermediate-1-risk del(5q) myelodysplastic syndromes is predicted by a limited subset of mutations. Haematologica, 2017, 102, 498-508.	3.5	34
68	Prognostic scoring systems for myelodysplastic syndromes (<scp>MDS</scp>) in a populationâ€based setting: a report from the Swedish <scp>MDS</scp> register. British Journal of Haematology, 2018, 181, 614-627.	2.5	34
69	Activation of a Subset of Evolutionarily Young Transposable Elements and Innate Immunity Are Linked to Clinical Responses to 5-Azacytidine. Cancer Research, 2020, 80, 2441-2450.	0.9	33
70	The Role of JAK2 Mutations in RARS and Other MDS. Hematology American Society of Hematology Education Program, 2008, 2008, 52-59.	2.5	32
71	Sipa1 deficiency–induced bone marrow niche alterations lead to the initiation of myeloproliferative neoplasm. Blood Advances, 2018, 2, 534-548.	5.2	32
72	Impact of treatment with iron chelation therapy in patients with lower-risk myelodysplastic syndromes participating in the European MDS registry. Haematologica, 2020, 105, 640-651.	3.5	32

Eva Hellström-Lindberg

#	Article	IF	CITATIONS
73	Angiogenesis in relation to clinical stage, apoptosis and prognostic score in myelodysplastic syndromes. Leukemia Research, 2006, 30, 247-253.	0.8	31
74	Gene expression profiling of erythroblasts from refractory anaemia with ring sideroblasts (RARS) and effects of G SF. British Journal of Haematology, 2010, 149, 844-854.	2.5	31
75	Loss of lenalidomide-induced megakaryocytic differentiation leads to therapy resistance in del(5q) myelodysplastic syndrome. Nature Cell Biology, 2020, 22, 526-533.	10.3	30
76	Imprint of 5-azacytidine on the natural killer cell repertoire during systemic treatment for high-risk myelodysplastic syndrome. Oncotarget, 2015, 6, 34178-34190.	1.8	30
77	Supportive care, growth factors, and new therapies in myelodysplastic syndromes. Blood Reviews, 2008, 22, 75-91.	5.7	27
78	Erythropoiesis stimulating agents and other growth factors in low-risk MDS. Best Practice and Research in Clinical Haematology, 2013, 26, 401-410.	1.7	26
79	appreci8: a pipeline for precise variant calling integrating 8 tools. Bioinformatics, 2018, 34, 4205-4212.	4.1	26
80	Update on Supportive Care and New Therapies: Immunomodulatory Drugs, Growth Factors and Epigenetic-Acting Agents. Hematology American Society of Hematology Education Program, 2005, 2005, 161-166.	2.5	25
81	A pharmacodynamic study of 5-azacytidine in the P39 cell line. Experimental Hematology, 2006, 34, 35-43.	0.4	22
82	Perturbed hematopoietic stem and progenitor cell hierarchy in myelodysplastic syndromes patients with monosomy 7 as the sole cytogenetic abnormality. Oncotarget, 2016, 7, 72685-72698.	1.8	21
83	Self-perception of symptoms of anemia and fatigue before and after blood transfusions in patients with myelodysplastic syndromes. European Journal of Oncology Nursing, 2015, 19, 99-106.	2.1	20
84	Approach to anemia associated with myelodysplastic syndromes. Psychophysiology, 2003, 2, 122-9.	1.1	20
85	Early platelet count kinetics has prognostic value in lower-risk myelodysplastic syndromes. Blood Advances, 2018, 2, 2079-2089.	5.2	18
86	A longer duration of red blood cell storage is associated with a lower hemoglobin increase after blood transfusion: a cohort study. Transfusion, 2019, 59, 1945-1952.	1.6	18
87	Co-mutation pattern, clonal hierarchy, and clone size concur to determine disease phenotype of SRSF2P95-mutated neoplasms. Leukemia, 2021, 35, 2371-2381.	7.2	17
88	<i>ZBTB33</i> Is Mutated in Clonal Hematopoiesis and Myelodysplastic Syndromes and Impacts RNA Splicing. Blood Cancer Discovery, 2021, 2, 500-517.	5.0	17
89	RBC Transfusion Independence and Safety Profile of Lenalidomide 5 or 10 mg in Pts with Low- or Int-1-Risk MDS with Del5q: Results From a Randomized Phase III Trial (MDS-004) Blood, 2009, 114, 944-944.	1.4	17
90	Lead poisoning from souvenir earthenware. International Archives of Occupational and Environmental Health, 2006, 79, 165-168.	2.3	16

#	Article	IF	CITATIONS
91	Characterization of the Hematopoietic Stem and Progenitor Cell Hierarchy in Myelodysplastic Syndromes Patients with Monosomy 7 As the Sole Cytogenetic Abnormality. Blood, 2014, 124, 3490-3490.	1.4	16
92	Toxic iron species in lower-risk myelodysplastic syndrome patients: course of disease and effects on outcome. Leukemia, 2021, 35, 1745-1750.	7.2	15
93	Impact of Treatment with Iron Chelators in Lower-Risk MDS Patients Participating in the European Leukemianet MDS (EUMDS) Registry. Blood, 2016, 128, 3186-3186.	1.4	14
94	Hypochromic red blood cells in low-risk myelodysplastic syndromes: effects of treatment with hemopoietic growth factors. Haematologica, 2004, 89, 1446-53.	3.5	14
95	Significance of JAK2 and TET2 mutations in myelodysplastic syndromes. Blood Reviews, 2010, 24, 83-90.	5.7	13
96	A three-dimensional in vitro model of erythropoiesis recapitulates erythroid failure in myelodysplastic syndromes. Leukemia, 2020, 34, 271-282.	7.2	13
97	High-throughput mutational screening adds clinically important information in myelodysplastic syndromes and secondary or therapy-related acute myeloid leukemia. Haematologica, 2015, 100, e223-e225.	3.5	12
98	Guideline-based indicators for adult patients with myelodysplastic syndromes. Blood Advances, 2020, 4, 4029-4044.	5.2	12
99	A predictive algorithm using clinical and laboratory parameters may assist in ruling out and in diagnosing MDS. Blood Advances, 2021, 5, 3066-3075.	5.2	12
100	Novel dynamic outcome indicators and clinical endpoints in myelodysplastic syndrome; the European LeukemiaNet MDS Registry and MDS-RIGHT project perspective. Haematologica, 2020, 105, 2516-2523.	3.5	12
101	GFI136N as a therapeutic and prognostic marker for myelodysplastic syndrome. Experimental Hematology, 2016, 44, 590-595.e1.	0.4	11
102	Cytomorphology review of 100 newly diagnosed lower-risk MDS patients in the European LeukemiaNet MDS (EUMDS) registry reveals a high inter-observer concordance. Annals of Hematology, 2017, 96, 1105-1112.	1.8	11
103	Prognostic scoring systems and comorbidities in chronic myelomonocytic leukaemia: a nationwide populationâ€based study. British Journal of Haematology, 2021, 192, 474-483.	2.5	10
104	Clinical characteristics and outcomes according to age in lenalidomide-treated patients with RBC transfusion-dependent lower-risk MDS and del(5q). Journal of Hematology and Oncology, 2017, 10, 131.	17.0	8
105	Male sex and the pattern of recurrent myeloid mutations are strong independent predictors of blood transfusion intensity in patients with myelodysplastic syndromes. Leukemia, 2019, 33, 522-527.	7.2	7
106	Patient-specific MDS-RS iPSCs define the mis-spliced transcript repertoire and chromatin landscape of <i>SF3B1</i> -mutant HSPCs. Blood Advances, 2022, 6, 2992-3005.	5.2	7
107	Marked downâ€regulation of nucleophosminâ€l is associated with advanced del(5q) myelodysplastic syndrome. British Journal of Haematology, 2011, 155, 272-274.	2.5	6
108	Allogeneic Hematopoietic Stem Cell Transplantation for Chronic Myelomonocytic Leukemia: Clinical and Molecular Genetic Prognostic Factors in a Nordic Population. Transplantation and Cellular Therapy, 2021, 27, 991.e1-991.e9.	1.2	6

#	Article	IF	CITATIONS
109	Early Mortality in 1000 Newly Diagnosed MDS Patients with Low- and Intermediate-1 Risk MDS in the European Leukemianet MDS (EUMDS) Registry. Blood, 2012, 120, 3830-3830.	1.4	6
110	"Randomized phase II study of azacitidine ± lenalidomide in higher-risk myelodysplastic syndromes and acute myeloid leukemia with a karyotype including Del(5q)― Leukemia, 2022, 36, 1436-1439.	7.2	6
111	Response: Factors considered in the 2008 WHO classification of myeloid neoplasms and acute leukemias. Blood, 2010, 115, 749-750.	1.4	5
112	Challenges of phase III trial design for novel treatments in diseases with no standard treatment: The AZA-001 myelodysplasia study model. Leukemia Research, 2014, 38, 258-262.	0.8	5
113	Prognostic impact of a suboptimal number of analyzed metaphases in normal karyotype lower-risk MDS. Leukemia Research, 2018, 67, 21-26.	0.8	4
114	Megakaryocytes harbour the del(5q) abnormality despite complete clinical and cytogenetic remission induced by lenalidomide treatment. British Journal of Haematology, 2018, 180, 526-533.	2.5	3
115	Validation Of The Revised International Prognostic Scoring System (IPSS-R) In 1000 Newly Diagnosed MDS Patients With Low- and Intermediate-1 Risk MDS In The European Leukemianet MDS (EUMDS) Registry. Blood, 2013, 122, 2770-2770.	1.4	3
116	p53 Mutant Independently Impacts Risk: Analysis of Deletion 5q, Lower-Risk Myelodysplastic Syndromes (MDS) Patients Treated with Lenalidomide (LEN) in the MDS-004 Study. Blood, 2014, 124, 414-414.	1.4	3
117	Limited benefit in patients with MDS receiving venetoclax and azacitidine as a bridge to allogeneic stem cell transplantation. Leukemia and Lymphoma, 2022, 63, 755-758.	1.3	3
118	Erythropoiesis-stimulating agents in myelodysplastic syndromes. Leukemia and Lymphoma, 2010, 51, 1155-1156.	1.3	2
119	The EHA Research Roadmap: Malignant Myeloid Diseases. HemaSphere, 2021, 5, e635.	2.7	2
120	Prognostic Relevance of the Kinetics of Worsening of Cytopenias in Lower-Risk MDS: A Substudy From the European Leukemianet Low Risk MDS (EUMDS) Registry. Blood, 2012, 120, 700-700.	1.4	2
121	The extent of residual WT HSPCs is associated with the degree of anemia in patients with <i>SF3B1</i> -mutated MDS-RS. Blood Advances, 2022, 6, 4705-4709.	5.2	2
122	Multicenter Next-Generation Sequencing Studies between Theory and Practice. Journal of Molecular Diagnostics, 2021, 23, 347-357.	2.8	1
123	MDS Diagnosis: Many Patients May Not Require Bone Marrow Examination. Blood, 2018, 132, 4357-4357.	1.4	1
124	Association Between Gene Expression Profiles and Commonly Mutated Genes In The Hematopoietic Stem Cells Of Patients With Myelodysplastic Syndromes. Blood, 2013, 122, 2779-2779.	1.4	1
125	Safety of Lenalidomide (LEN) 10mg in Non-Del(5q) Versus Del(5q) in the Treatment of Patients (Pts) with Lower-Risk Myelodysplastic Syndromes (MDS): Pooled Analysis of Treatment-Emergent Adverse Events (TEAEs). Blood, 2015, 126, 2880-2880.	1.4	1
126	High Throughput Targeted Gene Sequencing in 738 Myelodysplastic Syndromes Patients Reveals Novel Oncogenic Genes, Rare Driver Mutations and Complex Molecular Signatures with Potential Impact for Patient Diagnosis and Prognosis in the Clinic. Blood, 2012, 120, LBA-5-LBA-5.	1.4	1

#	Article	IF	CITATIONS
127	Excess Mortality in Low-Risk MDS Can be Explained By MDS and AML Related Causes of Death. Blood, 2018, 132, 4385-4385.	1.4	1
128	Adult-Onset Ataxia With Neuropathy and White Matter Abnormalities Due to a Novel SAMD9L Variant. Neurology: Genetics, 2021, 7, e628.	1.9	1
129	European Registry for Low Risk and Intermediate-1 Risk MDS: Base Line Report On First 400 Registered Patients Blood, 2009, 114, 3811-3811.	1.4	0
130	Patients with Del(5q) MDS Who Fail to Achieve Erythroid or Cytogenetic Remission After Treatment with Lenalidomide Have An Increased Risk for Clonal Evolution and AML Progression Blood, 2009, 114, 3818-3818.	1.4	0
131	Identification of Gene Expression Based Prognostic Markers in the Hematopoietic Stem Cells of Patients with Myelodysplastic Syndromes. Blood, 2012, 120, 3857-3857.	1.4	0
132	Granulocyte-Macrophage Progenitors (GMPs) Express Low Adhesive Potential and High CXCR-4 Levels. Blood, 2013, 122, 3698-3698.	1.4	0
133	Diverse Genetic Lesions In Myelodysplastic Syndromes Originate Exclusively In Rare MDS Stem Cells. Blood, 2013, 122, 4195-4195.	1.4	0
134	Outcomes In RBC Transfusion-Dependent Patients (Pts) With Low-/Intermediate (Int)-1-Risk Myelodysplastic Syndromes (MDS) With Isolated Deletion 5q Treated With Lenalidomide (LEN): A Subset Analysis From The MDS-004 Study. Blood, 2013, 122, 2753-2753.	1.4	0
135	Hierarchical Analysis Of Recurrent Point Mutations In SF3B1 and TET2 In RARS Stem Cells. Blood, 2013, 122, 2749-2749.	1.4	0
136	Impact Of The Proportion Of Metaphases With Isolated Del(5q) On Clinical Outcomes In Lenalidomide (LEN)-Treated Patients With IPSS Low-/Int-1-Risk Myelodysplastic Syndromes (MDS) In MDS-003 and MDS-004. Blood, 2013, 122, 1538-1538.	1.4	0
137	Multicolor Flowcytometry Analysis of Hematopoietic Stem and Progenitor Cells Subsets Among Basal and Mobilized Peripheral CD34+ Cells. Blood, 2014, 124, 5117-5117.	1.4	0
138	Prevalence and Clinical Impact of Additional Cytogenetic Abnormalities in Patients (Pts) with Myelodysplastic Syndromes (MDS) and Deletion 5q from the MDS-003 and MDS-004 Studies. Blood, 2014, 124, 3270-3270.	1.4	0
139	Identification of a Prognostic Gene Expression Signature for AZA Response in MDS and CMML Patients. Blood, 2014, 124, 4601-4601.	1.4	0
140	Hepcidin and GDF15 Levels during the First 2 Years Follow-up in Patients with Low and Int-1 Risk Myelodysplastic Syndromes (MDS) from the European Leukemianet MDS Registry. Blood, 2014, 124, 3267-3267.	1.4	0
141	Mutations in Histone Modulators and HOXA5 Methylation Levels Affects Survival in Azacitidine Treated MDS Patients. Blood, 2014, 124, 4613-4613.	1.4	Ο
142	Characterisation of the Stem and Progenitor Cell Hierarchy in Patients with CMML. Blood, 2014, 124, 1896-1896.	1.4	0
143	Prevalence and Impact on Outcomes of Additional Karyotypic Abnormalities in Patients (Pts) with Myelodysplastic Syndromes (MDS) and Del(5q) from the MDS-003 and MDS-004 Studies. Blood, 2015, 126, 1680-1680.	1.4	0
144	Prognostic Impact of Transfusions Intensity on Survival and Development of Thrombocytopenia in Newly Diagnosed Lower-Risk MDS Patients Participating in the European Leukemianet EU-MDS Registry. Blood, 2015, 126, 1677-1677.	1.4	0

#	Article	IF	CITATIONS
145	Conditional Survival in Patients with Del(5q) Myelodysplastic Syndromes Treated with Lenalidomide. Blood, 2015, 126, 2867-2867.	1.4	0
146	Mutations in Histone Modulators Are Associated with Prolonged Survival during Azacitidine Therapy. Blood, 2015, 126, 2839-2839.	1.4	0
147	Combined DNA and Transcriptome Sequencing Reveals Discrete Subtypes of Myelodysplasia. Blood, 2016, 128, 1974-1974.	1.4	0
148	Functional and Molecular Alterations of Bone Marrow Mesenchymal Stem and Progenitor Cells in Patients with Myelodysplastic Syndrome with Ring Sideroblast. Blood, 2016, 128, 1489-1489.	1.4	0
149	Elevated Labile Plasma Iron (LPI) Levels in Patients with Lower-Risk Myelodysplastic Syndromes (MDS) Are Associated with Decreased Quality of Life and Reduced Survival. Blood, 2018, 132, 4392-4392.	1.4	0
150	lsogenic MDS-RS Patient-Derived iPSCs Define the Mis-Spliced Transcript Repertoire and Chromatin Landscape of SF3B1-Mutant Hematopoietic Stem/Progenitor Cells. Blood, 2021, 138, 147-147.	1.4	0