George W Huber

List of Publications by Citations

Source: https://exaly.com/author-pdf/6146640/george-w-huber-publications-by-citations.pdf

Version: 2024-04-26

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

187 78 35,410 225 h-index g-index citations papers 39,116 255 11.7 7.74 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
225	Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. <i>Chemical Reviews</i> , 2006 , 106, 4044-98	68.1	5998
224	Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 7164-83	16.4	1944
223	Catalytic Transformation of Lignin for the Production of Chemicals and Fuels. <i>Chemical Reviews</i> , 2015 , 115, 11559-624	68.1	1600
222	Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. <i>Science</i> , 2005 , 308, 1446-50	33.3	1353
221	Synergies between bio- and oil refineries for the production of fuels from biomass. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 7184-201	16.4	1103
220	Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils. <i>Science</i> , 2010 , 330, 1222-7	33.3	867
219	Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons. <i>Science</i> , 2003 , 300, 2075-7	33.3	791
218	Investigation into the shape selectivity of zeolite catalysts for biomass conversion. <i>Journal of Catalysis</i> , 2011 , 279, 257-268	7.3	776
217	A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts. <i>Applied Catalysis B: Environmental</i> , 2005 , 56, 171-186	21.8	769
216	Aromatic Production from Catalytic Fast Pyrolysis of Biomass-Derived Feedstocks. <i>Topics in Catalysis</i> , 2009 , 52, 241-252	2.3	545
215	An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery. <i>Catalysis Today</i> , 2006 , 111, 119-132	5.3	545
214	Catalyst Design with Atomic Layer Deposition. ACS Catalysis, 2015, 5, 1804-1825	13.1	483
213	Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 1549-51	16.4	473
212	Processing biomass in conventional oil refineries: Production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixtures. <i>Applied Catalysis A: General</i> , 2007 , 329, 120-129	5.1	468
211	Kinetics and Mechanism of Cellulose Pyrolysis. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 20097-20107	3.8	451
210	Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds. <i>ChemSusChem</i> , 2008 , 1, 397-400	8.3	449
209	Processing biomass-derived oxygenates in the oil refinery: Catalytic cracking (FCC) reaction pathways and role of catalyst. <i>Journal of Catalysis</i> , 2007 , 247, 307-327	7.3	443

(2011-2011)

208	Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust. <i>Energy and Environmental Science</i> , 2011 , 4, 145-161	35.4	427	
207	Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: the hydrogen to carbon effective ratio. <i>Energy and Environmental Science</i> , 2011 , 4, 2297	35.4	376	
206	Biomass to chemicals: Catalytic conversion of glycerol/water mixtures into acrolein, reaction network. <i>Journal of Catalysis</i> , 2008 , 257, 163-171	7.3	374	
205	Aqueous-phase reforming of ethylene glycol on silica-supported metal catalysts. <i>Applied Catalysis B: Environmental</i> , 2003 , 43, 13-26	21.8	371	
204	The critical role of heterogeneous catalysis in lignocellulosic biomass conversion. <i>Energy and Environmental Science</i> , 2009 , 2, 68-80	35.4	364	
203	Catalytic fast pyrolysis of glucose with HZSM-5: The combined homogeneous and heterogeneous reactions. <i>Journal of Catalysis</i> , 2010 , 270, 110-124	7.3	349	
202	Design of solid acid catalysts for aqueous-phase dehydration of carbohydrates: The role of Lewis and Bristed acid sites. <i>Journal of Catalysis</i> , 2011 , 279, 174-182	7.3	339	
201	Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating. <i>Green Chemistry</i> , 2010 , 12, 1423	10	311	
200	Aqueous-phase reforming of oxygenated hydrocarbons over Sn-modified Ni catalysts. <i>Journal of Catalysis</i> , 2004 , 222, 180-191	7.3	309	
199	Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5. <i>Applied Catalysis A: General</i> , 2012 , 423-424, 154-161	5.1	302	
198	Production of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic processing of biomass. <i>Energy and Environmental Science</i> , 2014 , 7, 1500-1523	35.4	295	
197	Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst. <i>Energy and Environmental Science</i> , 2012 , 5, 7559	35.4	294	
196	Aqueous-phase hydrodeoxygenation of sorbitol with Pt/SiO2Al2O3: Identification of reaction intermediates. <i>Journal of Catalysis</i> , 2010 , 270, 48-59	7.3	293	
195	Production of jet and diesel fuel range alkanes from waste hemicellulose-derived aqueous solutions. <i>Green Chemistry</i> , 2010 , 12, 1933	10	289	
194	Aqueous-phase reforming of methanol and ethylene glycol over alumina-supported platinum catalysts. <i>Journal of Catalysis</i> , 2003 , 215, 344-352	7.3	289	
193	Production of renewable aromatic compounds by catalytic fast pyrolysis of lignocellulosic biomass with bifunctional Ga/ZSM-5 catalysts. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 1387-90	16.4	288	
192	Catalytic oxidation of carbohydrates into organic acids and furan chemicals. <i>Chemical Society Reviews</i> , 2018 , 47, 1351-1390	58.5	287	
191	Production of furfural and carboxylic acids from waste aqueous hemicellulose solutions from the pulp and paper and cellulosic ethanol industries. <i>Energy and Environmental Science</i> , 2011 , 4, 2193	35.4	271	

190	Aqueous-phase reforming of ethylene glycol over supported Pt and Pd bimetallic catalysts. <i>Applied Catalysis B: Environmental</i> , 2006 , 62, 226-235	21.8	262
189	Production of targeted aromatics by using DielsAlder classes of reactions with furans and olefins over ZSM-5. <i>Green Chemistry</i> , 2012 , 14, 3114	10	259
188	Single-reactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water. <i>Applied Catalysis B: Environmental</i> , 2006 , 66, 111-118	21.8	247
187	Chemistry of Furan Conversion into Aromatics and Olefins over HZSM-5: A Model Biomass Conversion Reaction. <i>ACS Catalysis</i> , 2011 , 1, 611-628	13.1	246
186	A general framework for the assessment of solar fuel technologies. <i>Energy and Environmental Science</i> , 2015 , 8, 126-157	35.4	242
185	Recent advances in hydrodeoxygenation of biomass-derived oxygenates over heterogeneous catalysts. <i>Green Chemistry</i> , 2019 , 21, 3715-3743	10	233
184	The pyrolysis chemistry of a EO-4 type oligomeric lignin model compound. <i>Green Chemistry</i> , 2013 , 15, 125-136	10	229
183	Aqueous-Phase Reforming of Ethylene Glycol Over Supported Platinum Catalysts. <i>Catalysis Letters</i> , 2003 , 88, 1-8	2.8	226
182	Production of hydrogen, alkanes and polyols by aqueous phase processing of wood-derived pyrolysis oils. <i>Green Chemistry</i> , 2009 , 11, 1433	10	206
181	Electrochemical Oxidation of 5-Hydroxymethylfurfural with NiFe Layered Double Hydroxide (LDH) Nanosheet Catalysts. <i>ACS Catalysis</i> , 2018 , 8, 5533-5541	13.1	202
180	Production of p-xylene from biomass by catalytic fast pyrolysis using ZSM-5 catalysts with reduced pore openings. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 11097-100	16.4	178
179	Catalytic fast pyrolysis of wood and alcohol mixtures in a fluidized bed reactor. <i>Green Chemistry</i> , 2012 , 14, 98-110	10	169
178	A distributed activation energy model for the pyrolysis of lignocellulosic biomass. <i>Green Chemistry</i> , 2013 , 15, 1331	10	169
177	Production of renewable petroleum refinery diesel and jet fuel feedstocks from hemicellulose sugar streams. <i>Energy and Environmental Science</i> , 2013 , 6, 205-216	35.4	165
176	Conversion of glucose into levulinic acid with solid metal(IV) phosphate catalysts. <i>Journal of Catalysis</i> , 2013 , 304, 123-134	7.3	161
175	Kinetics and reaction engineering of levulinic acid production from aqueous glucose solutions. <i>ChemSusChem</i> , 2012 , 5, 1280-90	8.3	149
174	Experimental and DFT studies of the conversion of ethanol and acetic acid on PtSn-based catalysts. Journal of Physical Chemistry B, 2005 , 109, 2074-85	3.4	144
173	Depolymerization of lignocellulosic biomass to fuel precursors: maximizing carbon efficiency by combining hydrolysis with pyrolysis. <i>Energy and Environmental Science</i> , 2010 , 3, 358	35.4	142

(2004-2014)

172	Catalytic fast pyrolysis of lignocellulosic biomass in a process development unit with continual catalyst addition and removal. <i>Chemical Engineering Science</i> , 2014 , 108, 33-46	4.4	138
171	Dehydration of cellulose to levoglucosenone using polar aprotic solvents. <i>Energy and Environmental Science</i> , 2015 , 8, 1808-1815	35.4	136
170	Highly active and stable PtRuSn/C catalyst for electrooxidations of ethylene glycol and glycerol. <i>Applied Catalysis B: Environmental</i> , 2011 , 101, 366-375	21.8	134
169	Liquid phase aldol condensation reactions with MgOZrO2 and shape-selective nitrogen-substituted NaY. <i>Applied Catalysis A: General</i> , 2011 , 392, 57-68	5.1	127
168	Production of Renewable Aromatic Compounds by Catalytic Fast Pyrolysis of Lignocellulosic Biomass with Bifunctional Ga/ZSM-5 Catalysts. <i>Angewandte Chemie</i> , 2012 , 124, 1416-1419	3.6	124
167	Hydrodeoxygenation of the aqueous fraction of bio-oil with Ru/C and Pt/C catalysts. <i>Applied Catalysis B: Environmental</i> , 2015 , 165, 446-456	21.8	113
166	Aqueous-phase hydrodeoxygenation of sorbitol: A comparative study of Pt/Zr phosphate and PtReOx/C. <i>Journal of Catalysis</i> , 2013 , 304, 72-85	7.3	108
165	Mechanistic Insights from Isotopic Studies of Glucose Conversion to Aromatics Over ZSM-5. <i>ChemCatChem</i> , 2009 , 1, 107-110	5.2	106
164	Role of the Cu-ZrO2 Interfacial Sites for Conversion of Ethanol to Ethyl Acetate and Synthesis of Methanol from CO2 and H2. <i>ACS Catalysis</i> , 2016 , 6, 7040-7050	13.1	106
163	Ab initio dynamics of cellulose pyrolysis: nascent decomposition pathways at 327 and 600 °C. Journal of the American Chemical Society, 2012 , 134, 14958-72	16.4	105
162	Renewable gasoline from aqueous phase hydrodeoxygenation of aqueous sugar solutions prepared by hydrolysis of maple wood. <i>Green Chemistry</i> , 2011 , 13, 91-101	10	105
161	Aqueous-Phase Hydrogenation of Acetic Acid over Transition Metal Catalysts. <i>ChemCatChem</i> , 2010 , 2, 1420-1424	5.2	105
160	Effect of Sn addition to Pt/CeO2Al2O3 and Pt/Al2O3 catalysts: An XPS, 119Sn MBsbauer and microcalorimetry study. <i>Journal of Catalysis</i> , 2006 , 241, 378-388	7.3	104
159	Renewable high-octane gasoline by aqueous-phase hydrodeoxygenation of Cland Clacarbohydrates over Pt/Zirconium phosphate catalysts. <i>ChemSusChem</i> , 2010 , 3, 1154-7	8.3	103
158	Plasmon-enhanced photoelectrochemical water splitting with size-controllable gold nanodot arrays. <i>ACS Nano</i> , 2014 , 8, 10756-65	16.7	102
157	Enhanced stability of cobalt catalysts by atomic layer deposition for aqueous-phase reactions. Energy and Environmental Science, 2014 , 7, 1657	35.4	99
156	Aqueous-phase hydrogenation and hydrodeoxygenation of biomass-derived oxygenates with bimetallic catalysts. <i>Green Chemistry</i> , 2014 , 16, 708	10	99
155	Renewable Alkanes by Aqueous-Phase Reforming of Biomass-Derived Oxygenates. <i>Angewandte Chemie</i> , 2004 , 116, 1575-1577	3.6	95

154	Efficient electrochemical production of glucaric acid and H via glucose electrolysis. <i>Nature Communications</i> , 2020 , 11, 265	17.4	93
153	Kinetics and reaction chemistry for slow pyrolysis of enzymatic hydrolysis lignin and organosolv extracted lignin derived from maplewood. <i>Green Chemistry</i> , 2012 , 14, 428-439	10	91
152	Production of levoglucosenone and 5-hydroxymethylfurfural from cellulose in polar aprotic solventwater mixtures. <i>Green Chemistry</i> , 2017 , 19, 3642-3653	10	90
151	Selective Conversion of Cellulose to Hydroxymethylfurfural in Polar Aprotic Solvents. <i>ChemCatChem</i> , 2014 , 6, 2229-2234	5.2	90
150	Stabilizing cobalt catalysts for aqueous-phase reactions by strong metal-support interaction. Journal of Catalysis, 2015 , 330, 19-27	7.3	87
149	Universal kinetic solvent effects in acid-catalyzed reactions of biomass-derived oxygenates. <i>Energy and Environmental Science</i> , 2018 , 11, 617-628	35.4	85
148	The electrocatalytic hydrogenation of furanic compounds in a continuous electrocatalytic membrane reactor. <i>Green Chemistry</i> , 2013 , 15, 1869	10	83
147	Highly selective transformation of glycerol to dihydroxyacetone without using oxidants by a PtSb/C-catalyzed electrooxidation process. <i>Green Chemistry</i> , 2016 , 18, 2877-2887	10	78
146	Plasmon-enhanced reverse water gas shift reaction over oxide supported Au catalysts. <i>Catalysis Science and Technology</i> , 2015 , 5, 2590-2601	5.5	77
145	CC bond formation reactions for biomass-derived molecules. <i>ChemSusChem</i> , 2010 , 3, 1158-61	8.3	77
144	Electrocatalytic Oxidation of Glycerol to Formic Acid by CuCo2O4 Spinel Oxide Nanostructure Catalysts. <i>ACS Catalysis</i> , 2020 , 10, 6741-6752	13.1	77
143	Chemicals from Biomass: Combining Ring-Opening Tautomerization and Hydrogenation Reactions to Produce 1,5-Pentanediol from Furfural. <i>ChemSusChem</i> , 2017 , 10, 1351-1355	8.3	75
142	Conversion of Furfural to 1,5-Pentanediol: Process Synthesis and Analysis. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 4699-4706	8.3	75
141	Simulating infrared spectra and hydrogen bonding in cellulose Ilat elevated temperatures. <i>Journal of Chemical Physics</i> , 2011 , 135, 134506	3.9	75
140	Methane Conversion to Ethylene and Aromatics on PtSn Catalysts. ACS Catalysis, 2017, 7, 2088-2100	13.1	73
139	Separation of acetic acid from the aqueous fraction of fast pyrolysis bio-oils using nanofiltration and reverse osmosis membranes. <i>Journal of Membrane Science</i> , 2011 , 378, 495-502	9.6	73
138	Reverse Water-Gas Shift on Interfacial Sites Formed by Deposition of Oxidized Molybdenum Moieties onto Gold Nanoparticles. <i>Journal of the American Chemical Society</i> , 2015 , 137, 10317-25	16.4	72
137	Vapor phase butanal self-condensation over unsupported and supported alkaline earth metal oxides. <i>Journal of Catalysis</i> , 2012 , 286, 248-259	7.3	72

(2018-2019)

136	Chemistries and processes for the conversion of ethanol into middle-distillate fuels. <i>Nature Reviews Chemistry</i> , 2019 , 3, 223-249	34.6	71
135	The intrinsic kinetics and heats of reactions for cellulose pyrolysis and char formation. <i>ChemSusChem</i> , 2010 , 3, 1162-5	8.3	71
134	Synthesis of 1,6-Hexanediol from Cellulose Derived Tetrahydrofuran-Dimethanol with Pt-WOx/TiO2 Catalysts. <i>ACS Catalysis</i> , 2018 , 8, 1427-1439	13.1	68
133	Renewable N-Heterocycles Production by Thermocatalytic Conversion and Ammonization of Biomass over ZSM-5. <i>ACS Sustainable Chemistry and Engineering</i> , 2015 , 3, 2890-2899	8.3	63
132	Role of acid sites and selectivity correlation in solvent free liquid phase dehydration of sorbitol to isosorbide. <i>Applied Catalysis A: General</i> , 2015 , 492, 252-261	5.1	62
131	Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production. <i>Biotechnology for Biofuels</i> , 2011 , 4, 43	7.8	61
130	Recycling of multilayer plastic packaging materials by solvent-targeted recovery and precipitation. <i>Science Advances</i> , 2020 , 6,	14.3	61
129	Low temperature hydrogenation of pyrolytic lignin over Ru/TiO2: 2D HSQC and 13C NMR study of reactants and products. <i>Green Chemistry</i> , 2016 , 18, 271-281	10	59
128	Functionality and molecular weight distribution of red oak lignin before and after pyrolysis and hydrogenation. <i>Green Chemistry</i> , 2017 , 19, 1378-1389	10	59
127	High-throughput screening of monometallic catalysts for aqueous-phase hydrogenation of biomass-derived oxygenates. <i>Applied Catalysis B: Environmental</i> , 2013 , 140-141, 98-107	21.8	59
126	Global bioenergy potential from high-lignin agricultural residue. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 4014-9	11.5	58
125	A General Framework for the Evaluation of Direct Nonoxidative Methane Conversion Strategies. <i>Joule</i> , 2018 , 2, 349-365	27.8	56
124	Hydrodeoxygenation of Pyrolysis Oils. <i>Energy Technology</i> , 2017 , 5, 80-93	3.5	55
123	Low-temperature oligomerization of 1-butene with H-ferrierite. <i>Journal of Catalysis</i> , 2015 , 323, 33-44	7.3	55
122	Efficient electrooxidation of biomass-derived glycerol over a graphene-supported PtRu electrocatalyst. <i>Electrochemistry Communications</i> , 2011 , 13, 890-893	5.1	55
121	Grassoline at the pump. <i>Scientific American</i> , 2009 , 301, 52-9	0.5	52
120	The effects of contact time and coking on the catalytic fast pyrolysis of cellulose. <i>Green Chemistry</i> , 2017 , 19, 286-297	10	50
119	Oxygenated commodity chemicals from chemo-catalytic conversion of biomass derived heterocycles. <i>AICHE Journal</i> , 2018 , 64, 1910-1922	3.6	50

118	The Chemistry and Kinetics of Polyethylene Pyrolysis: A Process to Produce Fuels and Chemicals. <i>ChemSusChem</i> , 2020 , 13, 1764-1774	8.3	48
117	Synthesis of Jet-Fuel Range Cycloalkanes from the Mixtures of Cyclopentanone and Butanal. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 11825-11837	3.9	48
116	Improving economics of lignocellulosic biofuels: An integrated strategy for coproducing 1,5-pentanediol and ethanol. <i>Applied Energy</i> , 2018 , 213, 585-594	10.7	48
115	Hydrogenation of levoglucosenone to renewable chemicals. <i>Green Chemistry</i> , 2017 , 19, 1278-1285	10	47
114	The effects of ZSM-5 mesoporosity and morphology on the catalytic fast pyrolysis of furan. <i>Green Chemistry</i> , 2017 , 19, 3549-3557	10	46
113	Selective glycerol oxidation by electrocatalytic dehydrogenation. <i>ChemSusChem</i> , 2014 , 7, 1051-6	8.3	46
112	Supercritical methanol depolymerization and hydrodeoxygenation of lignin and biomass over reduced copper porous metal oxides. <i>Green Chemistry</i> , 2019 , 21, 2988-3005	10	45
111	New catalytic strategies for 衄iols production from lignocellulosic biomass. <i>Faraday Discussions</i> , 2017 , 202, 247-267	3.6	44
110	Production of aromatics by catalytic fast pyrolysis of cellulose in a bubbling fluidized bed reactor. <i>AICHE Journal</i> , 2014 , 60, 1320-1335	3.6	44
109	Catalysts for Emerging Energy Applications. <i>MRS Bulletin</i> , 2008 , 33, 429-435	3.2	44
108	Removal of char particles from fast pyrolysis bio-oil by microfiltration. <i>Journal of Membrane Science</i> , 2010 , 363, 120-127	9.6	43
107			
	Synthesis Gas Conversion over Rh-Based Catalysts Promoted by Fe and Mn. ACS Catalysis, 2017 , 7, 4550	- 4 <u>5</u> .63	42
106	Synthesis Gas Conversion over Rh-Based Catalysts Promoted by Fe and Mn. <i>ACS Catalysis</i> , 2017 , 7, 4550. Enhanced Activity and Stability of TiO2-Coated Cobalt/Carbon Catalysts for Electrochemical Water Oxidation. <i>ACS Catalysis</i> , 2015 , 5, 3463-3469	-4 <u>5</u> .63	42
106	Enhanced Activity and Stability of TiO2-Coated Cobalt/Carbon Catalysts for Electrochemical Water		<u> </u>
	Enhanced Activity and Stability of TiO2-Coated Cobalt/Carbon Catalysts for Electrochemical Water Oxidation. <i>ACS Catalysis</i> , 2015 , 5, 3463-3469 Effects of hydrogen and water on the activity and selectivity of acetic acid hydrogenation on	13.1	42
105	Enhanced Activity and Stability of TiO2-Coated Cobalt/Carbon Catalysts for Electrochemical Water Oxidation. <i>ACS Catalysis</i> , 2015 , 5, 3463-3469 Effects of hydrogen and water on the activity and selectivity of acetic acid hydrogenation on ruthenium. <i>Green Chemistry</i> , 2014 , 16, 911-924 Coproducing Value-Added Chemicals and Hydrogen with Electrocatalytic Glycerol Oxidation Technology: Experimental and Techno-Economic Investigations. <i>ACS Sustainable Chemistry and</i>	13.1	42
105	Enhanced Activity and Stability of TiO2-Coated Cobalt/Carbon Catalysts for Electrochemical Water Oxidation. <i>ACS Catalysis</i> , 2015 , 5, 3463-3469 Effects of hydrogen and water on the activity and selectivity of acetic acid hydrogenation on ruthenium. <i>Green Chemistry</i> , 2014 , 16, 911-924 Coproducing Value-Added Chemicals and Hydrogen with Electrocatalytic Glycerol Oxidation Technology: Experimental and Techno-Economic Investigations. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 6626-6634 Conceptual process design: A systematic method to evaluate and develop renewable energy	13.1 10 8.3	42 41 41

(2017-2015)

100	Direct production of indoles via thermo-catalytic conversion of bio-derived furans with ammonia over zeolites. <i>Green Chemistry</i> , 2015 , 17, 1281-1290	10	38	
99	Highly improved oxygen reduction performance over Pt/C-dispersed nanowire network catalysts. <i>Electrochemistry Communications</i> , 2010 , 12, 32-35	5.1	37	
98	Hydrogenation of Butyrolactone to 1,4-Butanediol over CuCo/TiO2 Bimetallic Catalysts. <i>ACS Catalysis</i> , 2017 , 7, 8429-8440	13.1	36	
97	Catalysis Center for Energy Innovation for Biomass Processing: Research Strategies and Goals. <i>Catalysis Letters</i> , 2010 , 140, 77-84	2.8	36	
96	Production of p-Xylene from Biomass by Catalytic Fast Pyrolysis Using ZSM-5 Catalysts with Reduced Pore Openings. <i>Angewandte Chemie</i> , 2012 , 124, 11259-11262	3.6	35	
95	Fundamental catalytic challenges to design improved biomass conversion technologies. <i>Journal of Catalysis</i> , 2019 , 369, 518-525	7.3	35	
94	Measurement of intrinsic catalytic activity of Pt monometallic and Pt-MoOx interfacial sites over visible light enhanced PtMoOx/SiO2 catalyst in reverse water gas shift reaction. <i>Journal of Catalysis</i> , 2016, 344, 784-794	7.3	34	
93	Synthesis of biomass-derived feedstocks for the polymers and fuels industries from 5-(hydroxymethyl)furfural (HMF) and acetone. <i>Green Chemistry</i> , 2019 , 21, 5532-5540	10	33	
92	Dual-bed catalyst system for the direct synthesis of high density aviation fuel with cyclopentanone from lignocellulose. <i>AICHE Journal</i> , 2016 , 62, 2754-2761	3.6	33	
91	A machine learning framework for the analysis and prediction of catalytic activity from experimental data. <i>Applied Catalysis B: Environmental</i> , 2020 , 263, 118257	21.8	33	
90	Production of Alcohols from Cellulose by Supercritical Methanol Depolymerization and Hydrodeoxygenation. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 4330-4344	8.3	32	
89	Hydrothermal Stability of Co/SiO2 Fischer-Tropsch Synthesis Catalysts. <i>Studies in Surface Science and Catalysis</i> , 2001 , 139, 423-430	1.8	32	
88	The role of Pt-FexOy interfacial sites for CO oxidation. <i>Journal of Catalysis</i> , 2018 , 358, 19-26	7-3	32	
87	Intrinsic activity of interfacial sites for Pt-Fe and Pt-Mo catalysts in the hydrogenation of carbonyl groups. <i>Applied Catalysis B: Environmental</i> , 2018 , 231, 182-190	21.8	31	
86	Catalysts synthesized by selective deposition of Fe onto Pt for the water-gas shift reaction. <i>Applied Catalysis B: Environmental</i> , 2018 , 222, 182-190	21.8	29	
85	Modeling aqueous-phase hydrodeoxygenation of sorbitol over Pt/SiO2Al2O3. <i>RSC Advances</i> , 2013 , 3, 23769	3.7	29	
84	Ethylene Dimerization and Oligomerization to 1-Butene and Higher Olefins with Chromium-Promoted Cobalt on Carbon Catalyst. <i>ACS Catalysis</i> , 2018 , 8, 2488-2497	13.1	27	
83	Kinetics of Levoglucosenone Isomerization. <i>ChemSusChem</i> , 2017 , 10, 129-138	8.3	27	

82	Hydrothermally stable regenerable catalytic supports for aqueous-phase conversion of biomass. <i>Catalysis Today</i> , 2014 , 234, 66-74	5.3	26
81	Microwave-assisted fast conversion of lignin model compounds and organosolv lignin over methyltrioxorhenium in ionic liquids. <i>RSC Advances</i> , 2015 , 5, 84967-84973	3.7	25
80	Ring Opening of Biomass-Derived Cyclic Ethers to Dienes over Silica/Alumina. <i>ACS Catalysis</i> , 2017 , 7, 5248-5256	13.1	25
79	Principles of Heterogeneous Catalysis 2008 ,		25
78	The effect of steam on the catalytic fast pyrolysis of cellulose. <i>Green Chemistry</i> , 2015 , 17, 2912-2923	10	24
77	Production of monosaccharides and whey protein from acid whey waste streams in the dairy industry. <i>Green Chemistry</i> , 2018 , 20, 1824-1834	10	23
76	Catalytic dehydration of levoglucosan to levoglucosenone using Brfisted solid acid catalysts in tetrahydrofuran. <i>Green Chemistry</i> , 2019 , 21, 4988-4999	10	23
75	The stability of direct carbon fuel cells with molten Sb and Sb B i alloy anodes. <i>AICHE Journal</i> , 2013 , 59, 3342-3348	3.6	23
74	DFT study of nitrided zeolites: Mechanism of nitrogen substitution in HY and silicalite. <i>Journal of Catalysis</i> , 2010 , 269, 53-63	7.3	23
73	Effect of Mixed-Solvent Environments on the Selectivity of Acid-Catalyzed Dehydration Reactions. <i>ACS Catalysis</i> , 2020 , 10, 1679-1691	13.1	23
72	Production of 1,6-hexanediol from tetrahydropyran-2-methanol by dehydration and hydrogenation. <i>Green Chemistry</i> , 2017 , 19, 1390-1398	10	22
71	Synthesis Gas Conversion over Rh/Mo Catalysts Prepared by Atomic Layer Deposition. <i>ACS Catalysis</i> , 2019 , 9, 1810-1819	13.1	22
70	Selective Cellulose Hydrogenolysis to Ethanol Using Ni@C Combined with Phosphoric Acid Catalysts. <i>ChemSusChem</i> , 2019 , 12, 3977-3987	8.3	21
69	Low temperature aqueous phase hydrogenation of the light oxygenate fraction of bio-oil over supported ruthenium catalysts. <i>Green Chemistry</i> , 2017 , 19, 3252-3262	10	20
68	Intrinsic kinetics of plasmon-enhanced reverse water gas shift on Au and AuMo interfacial sites supported on silica. <i>Applied Catalysis A: General</i> , 2016 , 521, 182-189	5.1	20
67	Production of Linear Octenes from Oligomerization of 1-Butene over Carbon-Supported Cobalt Catalysts. <i>ACS Catalysis</i> , 2016 , 6, 3815-3825	13.1	20
66	Effect of carbon supports on RhRe bifunctional catalysts for selective hydrogenolysis of tetrahydropyran-2-methanol. <i>Catalysis Science and Technology</i> , 2016 , 6, 7841-7851	5.5	20
65	Catalytic synthesis of distillate-range ethers and olefins from ethanol through Guerbet coupling and etherification. <i>Green Chemistry</i> , 2019 , 21, 3300-3318	10	19

64	Comparison of Two Acid Hydrotropes for Sustainable Fractionation of Birch Wood. <i>ChemSusChem</i> , 2020 , 13, 4649-4659	8.3	18
63	Hydrodeoxygenation of Sorbitol to Monofunctional Fuel Precursors over Co/TiO2. <i>Joule</i> , 2017 , 1, 178-7	1 92 7.8	18
62	Supercritical Methanol Depolymerization and Hydrodeoxygenation of Maple Wood and Biomass-Derived Oxygenates into Renewable Alcohols in a Continuous Flow Reactor. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 15361-15372	8.3	17
61	Reaction-transport model for the pyrolysis of shrinking cellulose particles. <i>Chemical Engineering Science</i> , 2012 , 74, 160-171	4.4	17
60	Production of high-octane gasoline via hydrodeoxygenation of sorbitol over palladium-based bimetallic catalysts. <i>Journal of Environmental Management</i> , 2018 , 227, 329-334	7.9	17
59	Catalytic strategy for conversion of fructose to organic dyes, polymers, and liquid fuels. <i>Green Chemistry</i> , 2020 , 22, 5285-5295	10	16
58	Catalytic C-O bond hydrogenolysis of tetrahydrofuran-dimethanol over metal supported WOx/TiO2 catalysts. <i>Applied Catalysis B: Environmental</i> , 2019 , 258, 117945	21.8	15
57	Amination of 1-hexanol on bimetallic AuPd/TiO2 catalysts. <i>Green Chemistry</i> , 2018 , 20, 4695-4709	10	15
56	Phyllosilicate-Derived CuNi/SiO2 Catalysts in the Selective Hydrogenation of Adipic Acid to 1,6-Hexanediol. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 17872-17881	8.3	14
55	Gd promotion of Co/SiO2 FischerIIropsch synthesis catalysts. <i>Catalysis Letters</i> , 2001 , 74, 45-48	2.8	14
54	Investigation of the Reaction Pathways of Biomass-Derived Oxygenate Conversion into Monoalcohols in Supercritical Methanol with CuMgAl-Mixed-Metal Oxide. <i>ChemSusChem</i> , 2018 , 11, 400	7 ⁸ 4017	, 14
53	A self-adjusting platinum surface for acetone hydrogenation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 3446-3450	11.5	13
52	The Effect of Water on Furan Conversion over ZSM-5. ChemCatChem, 2014, 6, 2497-2500	5.2	13
51	Effect of Sn on the Reactivity of Cu Surfaces. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 14062-14073	3.4	13
50	Catalytic production of hexane-1,2,5,6-tetrol from bio-renewable levoglucosanol in water: effect of metal and acid sites on (stereo)-selectivity. <i>Green Chemistry</i> , 2018 , 20, 4557-4565	10	13
49	Olefin conversion on nitrogen-doped carbon-supported cobalt catalyst: Effect of feedstock. <i>Journal of Catalysis</i> , 2017 , 354, 213-222	7.3	12
48	11 DFT and experimental studies of C-C and C-O bond cleavage in ethanol and ethylene glycol on Pt catalysts. <i>Studies in Surface Science and Catalysis</i> , 2003 , 145, 79-84	1.8	12
47	Cobalt Oxide on N-Doped Carbon for 1-Butene Oligomerization to Produce Linear Octenes. <i>ACS Catalysis</i> , 2017 , 7, 7479-7489	13.1	11

46	Gas-phase dehydration of tetrahydrofurfuryl alcohol to dihydropyran over EAl2O3. <i>Applied Catalysis B: Environmental</i> , 2019 , 245, 62-70	21.8	11
45	Ethanol condensation at elevated pressure over copper on AlMgO and AlCaO porous mixed-oxide supports. <i>Catalysis Science and Technology</i> , 2019 , 9, 2032-2042	5.5	10
44	Tuning Acid-Base Properties Using Mg-Al Oxide Atomic Layer Deposition. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 16573-80	9.5	10
43	Conversion of furan over gallium and zinc promoted ZSM-5: The effect of metal and acid sites. <i>Fuel Processing Technology</i> , 2020 , 201, 106319	7.2	10
42	Chemical-Switching Strategy for Synthesis and Controlled Release of Norcantharimides from a Biomass-Derived Chemical. <i>ChemSusChem</i> , 2020 , 13, 5213-5219	8.3	10
41	Kinetic Modeling of Alcohol Oligomerization over Calcium Hydroxyapatite. ACS Catalysis, 2020, 10, 297	8-12;989	9
40	Mechanistic Insights into the Hydrogenolysis of Levoglucosanol over Bifunctional Platinum Silica Alumina Catalysts. <i>ACS Catalysis</i> , 2018 , 8, 3743-3753	13.1	9
39	Catalytic hydrogenation of dihydrolevoglucosenone to levoglucosanol with a hydrotalcite/mixed oxide copper catalyst. <i>Green Chemistry</i> , 2019 , 21, 5000-5007	10	9
38	Catalytic Conversion of Sugars to Fuels 2011 , 232-279		9
37	Synthesis Gas Conversion Over Molybdenum-Based Catalysts Promoted by Transition Metals. <i>ACS Catalysis</i> , 2020 , 10, 365-374	13.1	9
36	High-yield synthesis of glucooligosaccharides (GlOS) as potential prebiotics from glucose via non-enzymatic glycosylation. <i>Green Chemistry</i> , 2019 , 21, 2686-2698	10	8
35	Autocatalytic Hydration of Dihydropyran to 1,5-Pentanediol Precursors via in situ Formation of Liquid- and Solid-Phase Acids. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 10223-10230	8.3	8
34	Supercritical methanol depolymerization and hydrodeoxygenation of pyrolytic lignin over reduced copper porous metal oxides. <i>Green Chemistry</i> , 2020 , 22, 8403-8413	10	8
33	Rational Design of Mixed Solvent Systems for Acid-Catalyzed Biomass Conversion Processes Using a Combined Experimental, Molecular Dynamics and Machine Learning Approach. <i>Topics in Catalysis</i> , 2020 , 63, 649-663	2.3	7
32	Production of renewable C4tt6 monoalcohols from waste biomass-derived carbohydrate via aqueous-phase hydrodeoxygenation over Pt-ReO x /Zr-P. <i>Chemical Engineering Research and Design</i> , 2018 , 115, 2-7	5.5	7
31	Solid-state NMR studies of solvent-mediated, acid-catalyzed woody biomass pre-treatment for enzymatic conversion of residual cellulose. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 6551-65	68 ³	7
30	Kinetic stability of nitrogen-substituted sites in HY and silicalite from first principles. <i>Journal of Catalysis</i> , 2010 , 270, 249-255	7.3	6
29	Production of renewable alcohols from maple wood using supercritical methanol hydrodeoxygenation in a semi-continuous flowthrough reactor. <i>Green Chemistry</i> , 2020 , 22, 8462-8477	10	6

28	Oligomerization of 1-butene over carbon-supported CoOx and subsequent isomerization/hydroformylation to n-nonanal. <i>Catalysis Communications</i> , 2018 , 114, 93-97	3.2	6
27	Rates of Catalytic Reactions 2008 , 1445		5
26	Synthesis of performance-advantaged polyurethanes and polyesters from biomass-derived monomers by aldol-condensation of 5-hydroxymethyl furfural and hydrogenation. <i>Green Chemistry</i> , 2021 , 23, 4355-4364	10	5
25	Sustainable production of 5-hydroxymethyl furfural from glucose for process integration with high fructose corn syrup infrastructure. <i>Green Chemistry</i> , 2021 , 23, 3277-3288	10	5
24	Rates of levoglucosanol hydrogenolysis over Britsted and Lewis acid sites on platinum silica-alumina catalysts synthesized by atomic layer deposition. <i>Journal of Catalysis</i> , 2020 , 389, 111-120	7.3	4
23	Catalytic Conversion of Pyrolysis Oil to Alcohols and Alkanes in Supercritical Methanol over the CuMgAlOx Catalyst. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 2067-2079	8.3	4
22	Design of closed-loop recycling production of a Diels-Alder polymer from a biomass-derived difuran as a functional additive for polyurethanes <i>Green Chemistry</i> , 2021 , 23, 9479-9488	10	4
21	Hexane-1,2,5,6-tetrol as a Versatile and Biobased Building Block for the Synthesis of Sustainable (Chiral) Crystalline Mesoporous Polyboronates. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 134	30 ³ 134	4 <i>3</i> 6
20	Bio-based materials: general discussion. <i>Faraday Discussions</i> , 2017 , 202, 121-139	3.6	3
19	Catalytic Processes for Production of ⊞diols from Lignocellulosic Biomass		3
18	Synthesis of Hexane-Tetrols and -Triols with Fixed Hydroxyl Group Positions and Stereochemistry from Methyl Glycosides over Supported Metal Catalysts. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 800-805	8.3	3
17	The Hydrodeoxygenation of Glycerol over NiMoS x : Catalyst Stability and Activity at Hydropyrolysis Conditions. <i>ChemCatChem</i> , 2021 , 13, 425-437	5.2	3
16	Feedstocks and analysis: general discussion. Faraday Discussions, 2017, 202, 497-519	3.6	2
15	Catalytic Production of Glucose-Galactose Syrup from Greek Yogurt Acid Whey in a Continuous-Flow Reactor. <i>ChemSusChem</i> , 2020 , 13, 791-802	8.3	2
14	Renewable linear alpha-olefins by base-catalyzed dehydration of biologically-derived fatty alcohols. <i>Green Chemistry</i> , 2021 , 23, 4338-4354	10	2
13	Computational Approach for Rapidly Predicting Temperature-Dependent Polymer Solubilities Using Molecular-Scale Models. <i>ChemSusChem</i> , 2021 , 14, 4307-4316	8.3	2
12	Ethylene oligomerization into linear olefins over cobalt oxide on carbon catalyst. <i>Catalysis Science and Technology</i> , 2021 , 11, 3599-3608	5.5	2
11	On the integration of molecular dynamics, data science, and experiments for studying solvent effects on catalysis. <i>Current Opinion in Chemical Engineering</i> , 2022 , 36, 100796	5.4	1

10	Ethanol to distillate-range molecules using Cu/MgxAlOy catalysts with low Cu loadings. <i>Applied Catalysis B: Environmental</i> , 2021 , 304, 120984	21.8	1
9	Mechanistic Insights into the Conversion of Biorenewable Levoglucosanol to Dideoxysugars. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 16339-16349	8.3	1
8	A Career in Catalysis: James A. Dumesic. ACS Catalysis, 2021, 11, 2310-2339	13.1	1
7	Bio-based 1,5-Pentanediol as a Replacement for Petroleum-Derived 1,6-Hexanediol for Polyester Polyols, Coatings, and Adhesives. <i>ACS Sustainable Chemistry and Engineering</i> , 2022 , 10, 5781-5791	8.3	1
6	Elucidation of reaction network and kinetics between cellulose-derived 1,2-propanediol and methanol for one-pot biofuel production. <i>Green Chemistry</i> , 2022 , 24, 350-364	10	0
5	Catalytic conversion of cellulose to levoglucosenone using propylsulfonic acid functionalized SBA-15 and H2SO4 in tetrahydrofuran. <i>Biomass and Bioenergy</i> , 2022 , 156, 106315	5.3	O
4	Reaction kinetics study of ethylene oligomerization into linear olefins over carbon-supported cobalt catalysts. <i>Journal of Catalysis</i> , 2021 , 404, 954-954	7.3	О
3	Selective Cellulose Hydrogenolysis to Ethanol Using Ni@C Combined with Phosphoric Acid Catalysts. <i>ChemSusChem</i> , 2019 , 12, 3881-3881	8.3	

Investigation of the Reaction Pathways of Biomass-Derived Oxygenate Conversion into
Monoalcohols in Supercritical Methanol with CuMgAl-Mixed-Metal Oxide. *ChemSusChem*, **2018**, 11, 3995-3995