George W Huber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6146640/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of Transportation Fuels from Biomass:Â Chemistry, Catalysts, and Engineering. Chemical Reviews, 2006, 106, 4044-4098.	23.0	6,799
2	Catalytic Transformation of Lignin for the Production of Chemicals and Fuels. Chemical Reviews, 2015, 115, 11559-11624.	23.0	2,200
3	Liquidâ€Phase Catalytic Processing of Biomassâ€Derived Oxygenated Hydrocarbons to Fuels and Chemicals. Angewandte Chemie - International Edition, 2007, 46, 7164-7183.	7.2	2,148
4	Production of Liquid Alkanes by Aqueous-Phase Processing of Biomass-Derived Carbohydrates. Science, 2005, 308, 1446-1450.	6.0	1,502
5	Synergies between Bio―and Oil Refineries for the Production of Fuels from Biomass. Angewandte Chemie - International Edition, 2007, 46, 7184-7201.	7.2	1,225
6	Renewable Chemical Commodity Feedstocks from Integrated Catalytic Processing of Pyrolysis Oils. Science, 2010, 330, 1222-1227.	6.0	977
7	Investigation into the shape selectivity of zeolite catalysts for biomass conversion. Journal of Catalysis, 2011, 279, 257-268.	3.1	963
8	A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts. Applied Catalysis B: Environmental, 2005, 56, 171-186.	10.8	895
9	Raney Ni-Sn Catalyst for H2 Production from Biomass-Derived Hydrocarbons. Science, 2003, 300, 2075-2077.	6.0	878
10	Aromatic Production from Catalytic Fast Pyrolysis of Biomass-Derived Feedstocks. Topics in Catalysis, 2009, 52, 241-252.	1.3	621
11	An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery. Catalysis Today, 2006, 111, 119-132.	2.2	612
12	Catalyst Design with Atomic Layer Deposition. ACS Catalysis, 2015, 5, 1804-1825.	5.5	608
13	Kinetics and Mechanism of Cellulose Pyrolysis. Journal of Physical Chemistry C, 2009, 113, 20097-20107.	1.5	539
14	Processing biomass in conventional oil refineries: Production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixtures. Applied Catalysis A: General, 2007, 329, 120-129.	2.2	521
15	Renewable Alkanes by Aqueous-Phase Reforming of Biomass-Derived Oxygenates. Angewandte Chemie - International Edition, 2004, 43, 1549-1551.	7.2	520
16	Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust. Energy and Environmental Science, 2011, 4, 145-161.	15.6	507
17	Processing biomass-derived oxygenates in the oil refinery: Catalytic cracking (FCC) reaction pathways and role of catalyst. Journal of Catalysis, 2007, 247, 307-327.	3.1	498
18	Green Gasoline by Catalytic Fast Pyrolysis of Solid Biomass Derived Compounds. ChemSusChem, 2008, 1, 397-400	3.6	491

#	Article	IF	CITATIONS
19	Catalytic oxidation of carbohydrates into organic acids and furan chemicals. Chemical Society Reviews, 2018, 47, 1351-1390.	18.7	440
20	Aqueous-phase reforming of ethylene glycol on silica-supported metal catalysts. Applied Catalysis B: Environmental, 2003, 43, 13-26.	10.8	439
21	Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: the hydrogen to carbon effective ratio. Energy and Environmental Science, 2011, 4, 2297.	15.6	439
22	Biomass to chemicals: Catalytic conversion of glycerol/water mixtures into acrolein, reaction network. Journal of Catalysis, 2008, 257, 163-171.	3.1	423
23	The critical role of heterogeneous catalysis in lignocellulosic biomass conversion. Energy and Environmental Science, 2009, 2, 68-80.	15.6	406
24	Catalytic fast pyrolysis of glucose with HZSM-5: The combined homogeneous and heterogeneous reactions. Journal of Catalysis, 2010, 270, 110-124.	3.1	397
25	Design of solid acid catalysts for aqueous-phase dehydration of carbohydrates: The role of Lewis and BrĂ,nsted acid sites. Journal of Catalysis, 2011, 279, 174-182.	3.1	384
26	Recent advances in hydrodeoxygenation of biomass-derived oxygenates over heterogeneous catalysts. Green Chemistry, 2019, 21, 3715-3743.	4.6	367
27	Aqueous-phase reforming of oxygenated hydrocarbons over Sn-modified Ni catalysts. Journal of Catalysis, 2004, 222, 180-191.	3.1	354
28	Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5. Applied Catalysis A: General, 2012, 423-424, 154-161.	2.2	354
29	Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating. Green Chemistry, 2010, 12, 1423.	4.6	347
30	Aqueous-phase reforming of methanol and ethylene glycol over alumina-supported platinum catalysts. Journal of Catalysis, 2003, 215, 344-352.	3.1	343
31	Production of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic processing of biomass. Energy and Environmental Science, 2014, 7, 1500-1523.	15.6	342
32	Electrochemical Oxidation of 5-Hydroxymethylfurfural with NiFe Layered Double Hydroxide (LDH) Nanosheet Catalysts. ACS Catalysis, 2018, 8, 5533-5541.	5.5	340
33	Production of Renewable Aromatic Compounds by Catalytic Fast Pyrolysis of Lignocellulosic Biomass with Bifunctional Ga/ZSMâ€5 Catalysts. Angewandte Chemie - International Edition, 2012, 51, 1387-1390.	7.2	338
34	Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst. Energy and Environmental Science, 2012, 5, 7559.	15.6	333
35	Production of targeted aromatics by using Diels–Alder classes of reactions with furans and olefins over ZSM-5. Green Chemistry, 2012, 14, 3114.	4.6	330
36	Production of jet and diesel fuel range alkanes from waste hemicellulose-derived aqueous solutions. Green Chemistry, 2010, 12, 1933.	4.6	313

George W Huber

#	Article	IF	CITATIONS
37	Aqueous-phase hydrodeoxygenation of sorbitol with Pt/SiO2–Al2O3: Identification of reaction intermediates. Journal of Catalysis, 2010, 270, 48-59.	3.1	311
38	Aqueous-phase reforming of ethylene glycol over supported Pt and Pd bimetallic catalysts. Applied Catalysis B: Environmental, 2006, 62, 226-235.	10.8	302
39	Production of furfural and carboxylic acids from waste aqueous hemicellulose solutions from the pulp and paper and cellulosic ethanol industries. Energy and Environmental Science, 2011, 4, 2193.	15.6	300
40	Chemistry of Furan Conversion into Aromatics and Olefins over HZSM-5: A Model Biomass Conversion Reaction. ACS Catalysis, 2011, 1, 611-628.	5.5	295
41	A general framework for the assessment of solar fuel technologies. Energy and Environmental Science, 2015, 8, 126-157.	15.6	293
42	Single-reactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water. Applied Catalysis B: Environmental, 2006, 66, 111-118.	10.8	280
43	Efficient electrochemical production of glucaric acid and H2 via glucose electrolysis. Nature Communications, 2020, 11, 265.	5.8	280
44	The pyrolysis chemistry of a β-O-4 type oligomeric lignin model compound. Green Chemistry, 2013, 15, 125-136.	4.6	276
45	Aqueous-Phase Reforming of Ethylene Glycol Over Supported Platinum Catalysts. Catalysis Letters, 2003, 88, 1-8.	1.4	257
46	Production of hydrogen, alkanes and polyols by aqueous phase processing of wood-derived pyrolysis oils. Green Chemistry, 2009, 11, 1433.	4.6	232
47	Electrocatalytic Oxidation of Glycerol to Formic Acid by CuCo ₂ O ₄ Spinel Oxide Nanostructure Catalysts. ACS Catalysis, 2020, 10, 6741-6752.	5.5	221
48	A distributed activation energy model for the pyrolysis of lignocellulosic biomass. Green Chemistry, 2013, 15, 1331.	4.6	207
49	Production of <i>p</i> ‥ylene from Biomass by Catalytic Fast Pyrolysis Using ZSMâ€5 Catalysts with Reduced Pore Openings. Angewandte Chemie - International Edition, 2012, 51, 11097-11100.	7.2	199
50	Catalytic fast pyrolysis of wood and alcohol mixtures in a fluidized bed reactor. Green Chemistry, 2012, 14, 98-110.	4.6	198
51	Conversion of glucose into levulinic acid with solid metal(IV) phosphate catalysts. Journal of Catalysis, 2013, 304, 123-134.	3.1	189
52	Production of renewable petroleum refinery diesel and jet fuel feedstocks from hemicellulose sugar streams. Energy and Environmental Science, 2013, 6, 205-216.	15.6	184
53	Recycling of multilayer plastic packaging materials by solvent-targeted recovery and precipitation. Science Advances, 2020, 6, .	4.7	170
54	Kinetics and Reaction Engineering of Levulinic Acid Production from Aqueous Glucose Solutions. ChemSusChem, 2012, 5, 1280-1290.	3.6	168

#	Article	IF	CITATIONS
55	Dehydration of cellulose to levoglucosenone using polar aprotic solvents. Energy and Environmental Science, 2015, 8, 1808-1815.	15.6	167
56	Experimental and DFT Studies of the Conversion of Ethanol and Acetic Acid on PtSn-Based Catalystsâ€. Journal of Physical Chemistry B, 2005, 109, 2074-2085.	1.2	161
57	Catalytic fast pyrolysis of lignocellulosic biomass in a process development unit with continual catalyst addition and removal. Chemical Engineering Science, 2014, 108, 33-46.	1.9	158
58	Depolymerization of lignocellulosic biomass to fuel precursors: maximizing carbon efficiency by combining hydrolysis with pyrolysis. Energy and Environmental Science, 2010, 3, 358.	15.6	157
59	Highly active and stable PtRuSn/C catalyst for electrooxidations of ethylene glycol and glycerol. Applied Catalysis B: Environmental, 2011, 101, 366-375.	10.8	155
60	Liquid phase aldol condensation reactions with MgO–ZrO2 and shape-selective nitrogen-substituted NaY. Applied Catalysis A: General, 2011, 392, 57-68.	2.2	149
61	Role of the Cu-ZrO ₂ Interfacial Sites for Conversion of Ethanol to Ethyl Acetate and Synthesis of Methanol from CO ₂ and H ₂ . ACS Catalysis, 2016, 6, 7040-7050.	5.5	136
62	The Chemistry and Kinetics of Polyethylene Pyrolysis: A Process to Produce Fuels and Chemicals. ChemSusChem, 2020, 13, 1764-1774.	3.6	135
63	Effect of Sn addition to Pt/CeO2–Al2O3 and Pt/Al2O3 catalysts: An XPS, 119Sn Mössbauer and microcalorimetry study. Journal of Catalysis, 2006, 241, 378-388.	3.1	134
64	Chemistries and processes for the conversion of ethanol into middle-distillate fuels. Nature Reviews Chemistry, 2019, 3, 223-249.	13.8	132
65	Hydrodeoxygenation of the aqueous fraction of bio-oil with Ru/C and Pt/C catalysts. Applied Catalysis B: Environmental, 2015, 165, 446-456.	10.8	131
66	Mechanistic Insights from Isotopic Studies of Glucose Conversion to Aromatics Over ZSMâ€5. ChemCatChem, 2009, 1, 107-110.	1.8	125
67	Aqueousâ€Phase Hydrogenation of Acetic Acid over Transition Metal Catalysts. ChemCatChem, 2010, 2, 1420-1424.	1.8	123
68	Universal kinetic solvent effects in acid-catalyzed reactions of biomass-derived oxygenates. Energy and Environmental Science, 2018, 11, 617-628.	15.6	122
69	Aqueous-phase hydrodeoxygenation of sorbitol: A comparative study of Pt/Zr phosphate and PtReOx/C. Journal of Catalysis, 2013, 304, 72-85.	3.1	121
70	Production of levoglucosenone and 5-hydroxymethylfurfural from cellulose in polar aprotic solvent–water mixtures. Green Chemistry, 2017, 19, 3642-3653.	4.6	121
71	Ab Initio Dynamics of Cellulose Pyrolysis: Nascent Decomposition Pathways at 327 and 600 °C. Journal of the American Chemical Society, 2012, 134, 14958-14972.	6.6	118
72	The electrocatalytic hydrogenation of furanic compounds in a continuous electrocatalytic membrane reactor. Green Chemistry, 2013, 15, 1869.	4.6	115

#	Article	IF	CITATIONS
73	Renewable Highâ€Octane Gasoline by Aqueousâ€Phase Hydrodeoxygenation of C ₅ and C ₆ Carbohydrates over Pt/Zirconium Phosphate Catalysts. ChemSusChem, 2010, 3, 1154-1157.	3.6	114
74	Renewable gasoline from aqueous phase hydrodeoxygenation of aqueous sugar solutions prepared by hydrolysis of maple wood. Green Chemistry, 2011, 13, 91-101.	4.6	113
75	Kinetics and reaction chemistry for slow pyrolysis of enzymatic hydrolysislignin and organosolv extracted lignin derived from maplewood. Green Chemistry, 2012, 14, 428-439.	4.6	113
76	Aqueous-phase hydrogenation and hydrodeoxygenation of biomass-derived oxygenates with bimetallic catalysts. Green Chemistry, 2014, 16, 708.	4.6	111
77	Stabilizing cobalt catalysts for aqueous-phase reactions by strong metal-support interaction. Journal of Catalysis, 2015, 330, 19-27.	3.1	111
78	Synthesis of 1,6-Hexanediol from Cellulose Derived Tetrahydrofuran-Dimethanol with Pt-WO _{<i>x</i>} /TiO ₂ Catalysts. ACS Catalysis, 2018, 8, 1427-1439.	5.5	111
79	Selective Conversion of Cellulose to Hydroxymethylfurfural in Polar Aprotic Solvents. ChemCatChem, 2014, 6, 2229-2234.	1.8	110
80	Enhanced stability of cobalt catalysts by atomic layer deposition for aqueous-phase reactions. Energy and Environmental Science, 2014, 7, 1657.	15.6	109
81	Plasmon-Enhanced Photoelectrochemical Water Splitting with Size-Controllable Gold Nanodot Arrays. ACS Nano, 2014, 8, 10756-10765.	7.3	108
82	Plasmon-enhanced reverse water gas shift reaction over oxide supported Au catalysts. Catalysis Science and Technology, 2015, 5, 2590-2601.	2.1	104
83	Highly selective transformation of glycerol to dihydroxyacetone without using oxidants by a PtSb/C-catalyzed electrooxidation process. Green Chemistry, 2016, 18, 2877-2887.	4.6	104
84	Conversion of Furfural to 1,5-Pentanediol: Process Synthesis and Analysis. ACS Sustainable Chemistry and Engineering, 2017, 5, 4699-4706.	3.2	104
85	Renewable N-Heterocycles Production by Thermocatalytic Conversion and Ammonization of Biomass over ZSM-5. ACS Sustainable Chemistry and Engineering, 2015, 3, 2890-2899.	3.2	102
86	Chemicals from Biomass: Combining Ringâ€Opening Tautomerization and Hydrogenation Reactions to Produce 1,5â€Pentanediol from Furfural. ChemSusChem, 2017, 10, 1351-1355.	3.6	100
87	Methane Conversion to Ethylene and Aromatics on PtSn Catalysts. ACS Catalysis, 2017, 7, 2088-2100.	5.5	93
88	Simulating infrared spectra and hydrogen bonding in cellulose Iβ at elevated temperatures. Journal of Chemical Physics, 2011, 135, 134506.	1.2	92
89	CC Bond Formation Reactions for Biomassâ€Derived Molecules. ChemSusChem, 2010, 3, 1158-1161.	3.6	88
90	Separation of acetic acid from the aqueous fraction of fast pyrolysis bio-oils using nanofiltration and reverse osmosis membranes. Journal of Membrane Science, 2011, 378, 495-502.	4.1	87

George W Huber

#	Article	IF	CITATIONS
91	Reverse Water–Gas Shift on Interfacial Sites Formed by Deposition of Oxidized Molybdenum Moieties onto Gold Nanoparticles. Journal of the American Chemical Society, 2015, 137, 10317-10325.	6.6	87
92	Vapor phase butanal self-condensation over unsupported and supported alkaline earth metal oxides. Journal of Catalysis, 2012, 286, 248-259.	3.1	86
93	A General Framework for the Evaluation of Direct Nonoxidative Methane Conversion Strategies. Joule, 2018, 2, 349-365.	11.7	86
94	Functionality and molecular weight distribution of red oak lignin before and after pyrolysis and hydrogenation. Green Chemistry, 2017, 19, 1378-1389.	4.6	80
95	High-throughput screening of monometallic catalysts for aqueous-phase hydrogenation of biomass-derived oxygenates. Applied Catalysis B: Environmental, 2013, 140-141, 98-107.	10.8	78
96	A machine learning framework for the analysis and prediction of catalytic activity from experimental data. Applied Catalysis B: Environmental, 2020, 263, 118257.	10.8	76
97	The Intrinsic Kinetics and Heats of Reactions for Cellulose Pyrolysis and Char Formation. ChemSusChem, 2010, 3, 1162-1165.	3.6	75
98	Oxygenated commodity chemicals from chemo atalytic conversion of biomass derived heterocycles. AICHE Journal, 2018, 64, 1910-1922.	1.8	73
99	Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production. Biotechnology for Biofuels, 2011, 4, 43.	6.2	72
100	Role of acid sites and selectivity correlation in solvent free liquid phase dehydration of sorbitol to isosorbide. Applied Catalysis A: General, 2015, 492, 252-261.	2.2	72
101	The effects of ZSM-5 mesoporosity and morphology on the catalytic fast pyrolysis of furan. Green Chemistry, 2017, 19, 3549-3557.	4.6	72
102	Hydrodeoxygenation of Pyrolysis Oils. Energy Technology, 2017, 5, 80-93.	1.8	71
103	Hydrogenation of levoglucosenone to renewable chemicals. Green Chemistry, 2017, 19, 1278-1285.	4.6	70
104	Low temperature hydrogenation of pyrolytic lignin over Ru/TiO ₂ : 2D HSQC and ¹³ C NMR study of reactants and products. Green Chemistry, 2016, 18, 271-281.	4.6	68
105	Coproducing Value-Added Chemicals and Hydrogen with Electrocatalytic Glycerol Oxidation Technology: Experimental and Techno-Economic Investigations. ACS Sustainable Chemistry and Engineering, 2017, 5, 6626-6634.	3.2	68
106	Grassoline at the Pump. Scientific American, 2009, 301, 52-59.	1.0	67
107	The effects of contact time and coking on the catalytic fast pyrolysis of cellulose. Green Chemistry, 2017, 19, 286-297.	4.6	67
108	Global bioenergy potential from high-lignin agricultural residue. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4014-4019.	3.3	66

#	Article	IF	CITATIONS
109	Low-temperature oligomerization of 1-butene with H-ferrierite. Journal of Catalysis, 2015, 323, 33-44.	3.1	66
110	Fundamental catalytic challenges to design improved biomass conversion technologies. Journal of Catalysis, 2019, 369, 518-525.	3.1	64
111	Supercritical methanol depolymerization and hydrodeoxygenation of lignin and biomass over reduced copper porous metal oxides. Green Chemistry, 2019, 21, 2988-3005.	4.6	63
112	Selective Glycerol Oxidation by Electrocatalytic Dehydrogenation. ChemSusChem, 2014, 7, 1051-1056.	3.6	62
113	Efficient electrooxidation of biomass-derived glycerol over a graphene-supported PtRu electrocatalyst. Electrochemistry Communications, 2011, 13, 890-893.	2.3	61
114	New catalytic strategies for α,ï‰-diols production from lignocellulosic biomass. Faraday Discussions, 2017, 202, 247-267.	1.6	61
115	Improving economics of lignocellulosic biofuels: An integrated strategy for coproducing 1,5-pentanediol and ethanol. Applied Energy, 2018, 213, 585-594.	5.1	60
116	Synthesis of biomass-derived feedstocks for the polymers and fuels industries from 5-(hydroxymethyl)furfural (HMF) and acetone. Green Chemistry, 2019, 21, 5532-5540.	4.6	57
117	Synthesis of Jet-Fuel Range Cycloalkanes from the Mixtures of Cyclopentanone and Butanal. Industrial & Engineering Chemistry Research, 2015, 54, 11825-11837.	1.8	55
118	Techno-economic and environmental evaluation of producing chemicals and drop-in aviation biofuels <i>via</i> aqueous phase processing. Energy and Environmental Science, 2018, 11, 2085-2101.	15.6	54
119	Hydrogenation of γ-Butyrolactone to 1,4-Butanediol over CuCo/TiO ₂ Bimetallic Catalysts. ACS Catalysis, 2017, 7, 8429-8440.	5.5	52
120	Catalysts for Emerging Energy Applications. MRS Bulletin, 2008, 33, 429-435.	1.7	51
121	Synthesis Gas Conversion over Rh-Based Catalysts Promoted by Fe and Mn. ACS Catalysis, 2017, 7, 4550-4563.	5.5	51
122	Production of aromatics by catalytic fast pyrolysis of cellulose in a bubbling fluidized bed reactor. AICHE Journal, 2014, 60, 1320-1335.	1.8	50
123	Effects of hydrogen and water on the activity and selectivity of acetic acid hydrogenation on ruthenium. Green Chemistry, 2014, 16, 911-924.	4.6	49
124	Selective Cellulose Hydrogenolysis to Ethanol Using Ni@C Combined with Phosphoric Acid Catalysts. ChemSusChem, 2019, 12, 3977-3987.	3.6	49
125	Electrocatalytic Reduction of Acetone in a Protonâ€Exchangeâ€Membrane Reactor: A Model Reaction for the Electrocatalytic Reduction of Biomass. ChemSusChem, 2012, 5, 2410-2420.	3.6	48
126	Enhanced Activity and Stability of TiO ₂ -Coated Cobalt/Carbon Catalysts for Electrochemical Water Oxidation. ACS Catalysis, 2015, 5, 3463-3469.	5.5	48

#	Article	IF	CITATIONS
127	Direct production of indoles via thermo-catalytic conversion of bio-derived furans with ammonia over zeolites. Green Chemistry, 2015, 17, 1281-1290.	4.6	48
128	The role of Pt-FexOy interfacial sites for CO oxidation. Journal of Catalysis, 2018, 358, 19-26.	3.1	46
129	Removal of char particles from fast pyrolysis bio-oil by microfiltration. Journal of Membrane Science, 2010, 363, 120-127.	4.1	45
130	Measurement of intrinsic catalytic activity of Pt monometallic and Pt-MoOx interfacial sites over visible light enhanced PtMoOx/SiO2 catalyst in reverse water gas shift reaction. Journal of Catalysis, 2016, 344, 784-794.	3.1	45
131	Effect of Mixed-Solvent Environments on the Selectivity of Acid-Catalyzed Dehydration Reactions. ACS Catalysis, 2020, 10, 1679-1691.	5.5	45
132	Dualâ€bed catalyst system for the direct synthesis of high density aviation fuel with cyclopentanone from lignocellulose. AICHE Journal, 2016, 62, 2754-2761.	1.8	44
133	Conceptual process design: A systematic method to evaluate and develop renewable energy technologies. AICHE Journal, 2011, 57, 2292-2301.	1.8	42
134	Hydrothermal Stability of Co/SiO2 Fischer-Tropsch Synthesis Catalysts. Studies in Surface Science and Catalysis, 2001, 139, 423-430.	1.5	41
135	Intrinsic activity of interfacial sites for Pt-Fe and Pt-Mo catalysts in the hydrogenation of carbonyl groups. Applied Catalysis B: Environmental, 2018, 231, 182-190.	10.8	41
136	Production of Alcohols from Cellulose by Supercritical Methanol Depolymerization and Hydrodeoxygenation. ACS Sustainable Chemistry and Engineering, 2018, 6, 4330-4344.	3.2	41
137	Production of monosaccharides and whey protein from acid whey waste streams in the dairy industry. Green Chemistry, 2018, 20, 1824-1834.	4.6	40
138	Catalysis Center for Energy Innovation for Biomass Processing: Research Strategies and Goals. Catalysis Letters, 2010, 140, 77-84.	1.4	38
139	Highly improved oxygen reduction performance over Pt/C-dispersed nanowire network catalysts. Electrochemistry Communications, 2010, 12, 32-35.	2.3	38
140	Microwave-assisted fast conversion of lignin model compounds and organosolv lignin over methyltrioxorhenium in ionic liquids. RSC Advances, 2015, 5, 84967-84973.	1.7	38
141	Kinetics of Levoglucosenone Isomerization. ChemSusChem, 2017, 10, 129-138.	3.6	37
142	Ethylene Dimerization and Oligomerization to 1-Butene and Higher Olefins with Chromium-Promoted Cobalt on Carbon Catalyst. ACS Catalysis, 2018, 8, 2488-2497.	5.5	37
143	Comparison of Two Acid Hydrotropes for Sustainable Fractionation of Birch Wood. ChemSusChem, 2020, 13, 4649-4659.	3.6	37
144	Ring Opening of Biomass-Derived Cyclic Ethers to Dienes over Silica/Alumina. ACS Catalysis, 2017, 7, 5248-5256.	5.5	36

#	Article	IF	CITATIONS
145	Catalysts synthesized by selective deposition of Fe onto Pt for the water-gas shift reaction. Applied Catalysis B: Environmental, 2018, 222, 182-190.	10.8	34
146	Catalytic synthesis of distillate-range ethers and olefins from ethanol through Guerbet coupling and etherification. Green Chemistry, 2019, 21, 3300-3318.	4.6	34
147	Modeling aqueous-phase hydrodeoxygenation of sorbitol over Pt/SiO2–Al2O3. RSC Advances, 2013, 3, 23769.	1.7	33
148	Catalytic dehydration of levoglucosan to levoglucosenone using BrÃ,nsted solid acid catalysts in tetrahydrofuran. Green Chemistry, 2019, 21, 4988-4999.	4.6	33
149	Synthesis Gas Conversion over Rh/Mo Catalysts Prepared by Atomic Layer Deposition. ACS Catalysis, 2019, 9, 1810-1819.	5.5	33
150	Catalytic C-O bond hydrogenolysis of tetrahydrofuran-dimethanol over metal supported WOx/TiO2 catalysts. Applied Catalysis B: Environmental, 2019, 258, 117945.	10.8	32
151	Biomass at the shale gas crossroads. Green Chemistry, 2014, 16, 382.	4.6	31
152	Hydrothermally stable regenerable catalytic supports for aqueous-phase conversion of biomass. Catalysis Today, 2014, 234, 66-74.	2.2	30
153	Sustainable production of 5-hydroxymethyl furfural from glucose for process integration with high fructose corn syrup infrastructure. Green Chemistry, 2021, 23, 3277-3288.	4.6	30
154	The stability of direct carbon fuel cells with molten Sb and Sb–Bi alloy anodes. AICHE Journal, 2013, 59, 3342-3348.	1.8	28
155	Hydrodeoxygenation of Sorbitol to Monofunctional Fuel Precursors over Co/TiO2. Joule, 2017, 1, 178-199.	11.7	28
156	DFT study of nitrided zeolites: Mechanism of nitrogen substitution in HY and silicalite. Journal of Catalysis, 2010, 269, 53-63.	3.1	27
157	Production of Linear Octenes from Oligomerization of 1-Butene over Carbon-Supported Cobalt Catalysts. ACS Catalysis, 2016, 6, 3815-3825.	5.5	27
158	The effect of steam on the catalytic fast pyrolysis of cellulose. Green Chemistry, 2015, 17, 2912-2923.	4.6	26
159	Effect of carbon supports on RhRe bifunctional catalysts for selective hydrogenolysis of tetrahydropyran-2-methanol. Catalysis Science and Technology, 2016, 6, 7841-7851.	2.1	25
160	Intrinsic kinetics of plasmon-enhanced reverse water gas shift on Au and Au–Mo interfacial sites supported on silica. Applied Catalysis A: General, 2016, 521, 182-189.	2.2	25
161	Ethanol condensation at elevated pressure over copper on AlMgO and AlCaO porous mixed-oxide supports. Catalysis Science and Technology, 2019, 9, 2032-2042.	2.1	25
162	Synthesis of performance-advantaged polyurethanes and polyesters from biomass-derived monomers by aldol-condensation of 5-hydroxymethyl furfural and hydrogenation. Green Chemistry, 2021, 23, 4355-4364.	4.6	25

#	Article	IF	CITATIONS
163	Production of 1,6-hexanediol from tetrahydropyran-2-methanol by dehydration–hydration and hydrogenation. Green Chemistry, 2017, 19, 1390-1398.	4.6	24
164	Conversion of furan over gallium and zinc promoted ZSM-5: The effect of metal and acid sites. Fuel Processing Technology, 2020, 201, 106319.	3.7	24
165	Supercritical methanol depolymerization and hydrodeoxygenation of pyrolytic lignin over reduced copper porous metal oxides. Green Chemistry, 2020, 22, 8403-8413.	4.6	24
166	Catalytic Hydrogenolysis of Polyolefins into Alkanes. ACS Central Science, 2021, 7, 17-19.	5.3	24
167	The Effect of Water on Furan Conversion over ZSMâ€5. ChemCatChem, 2014, 6, 2497-2500.	1.8	22
168	Low temperature aqueous phase hydrogenation of the light oxygenate fraction of bio-oil over supported ruthenium catalysts. Green Chemistry, 2017, 19, 3252-3262.	4.6	22
169	Amination of 1-hexanol on bimetallic AuPd/TiO ₂ catalysts. Green Chemistry, 2018, 20, 4695-4709.	4.6	22
170	Production of high-octane gasoline via hydrodeoxygenation of sorbitol over palladium-based bimetallic catalysts. Journal of Environmental Management, 2018, 227, 329-334.	3.8	22
171	Olefin conversion on nitrogen-doped carbon-supported cobalt catalyst: Effect of feedstock. Journal of Catalysis, 2017, 354, 213-222.	3.1	21
172	Prospects and Challenges of Pyrolysis Technologies for Biomass Conversion. Energy Technology, 2017, 5, 5-6.	1.8	21
173	Catalytic production of hexane-1,2,5,6-tetrol from bio-renewable levoglucosanol in water: effect of metal and acid sites on (stereo)-selectivity. Green Chemistry, 2018, 20, 4557-4565.	4.6	21
174	Phyllosilicate-Derived CuNi/SiO ₂ Catalysts in the Selective Hydrogenation of Adipic Acid to 1,6-Hexanediol. ACS Sustainable Chemistry and Engineering, 2019, 7, 17872-17881.	3.2	21
175	High-yield synthesis of glucooligosaccharides (ClOS) as potential prebiotics from glucose <i>via</i> non-enzymatic glycosylation. Green Chemistry, 2019, 21, 2686-2698.	4.6	21
176	Synthesis Gas Conversion Over Molybdenum-Based Catalysts Promoted by Transition Metals. ACS Catalysis, 2020, 10, 365-374.	5.5	21
177	Catalytic strategy for conversion of fructose to organic dyes, polymers, and liquid fuels. Green Chemistry, 2020, 22, 5285-5295.	4.6	21
178	Reaction-transport model for the pyrolysis of shrinking cellulose particles. Chemical Engineering Science, 2012, 74, 160-171.	1.9	20
179	Tuning Acid–Base Properties Using Mg–Al Oxide Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2015, 7, 16573-16580.	4.0	20
180	Chemicalâ€Switching Strategy for Synthesis and Controlled Release of Norcantharimides from a Biomassâ€Derived Chemical. ChemSusChem, 2020, 13, 5213-5219.	3.6	20

#	Article	IF	CITATIONS
181	Supercritical Methanol Depolymerization and Hydrodeoxygenation of Maple Wood and Biomass-Derived Oxygenates into Renewable Alcohols in a Continuous Flow Reactor. ACS Sustainable Chemistry and Engineering, 2019, 7, 15361-15372.	3.2	19
182	Kinetic Modeling of Alcohol Oligomerization over Calcium Hydroxyapatite. ACS Catalysis, 2020, 10, 2978-2989.	5.5	19
183	Catalytic hydrogenation of dihydrolevoglucosenone to levoglucosanol with a hydrotalcite/mixed oxide copper catalyst. Green Chemistry, 2019, 21, 5000-5007.	4.6	18
184	Gas-phase dehydration of tetrahydrofurfuryl alcohol to dihydropyran over γ-Al2O3. Applied Catalysis B: Environmental, 2019, 245, 62-70.	10.8	18
185	Gd promotion of Co/SiO2 Fischer–Tropsch synthesis catalysts. Catalysis Letters, 2001, 74, 45-48.	1.4	17
186	Cobalt Oxide on N-Doped Carbon for 1-Butene Oligomerization to Produce Linear Octenes. ACS Catalysis, 2017, 7, 7479-7489.	5.5	17
187	Autocatalytic Hydration of Dihydropyran to 1,5-Pentanediol Precursors via in situ Formation of Liquid- and Solid-Phase Acids. ACS Sustainable Chemistry and Engineering, 2017, 5, 10223-10230.	3.2	17
188	A self-adjusting platinum surface for acetone hydrogenation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3446-3450.	3.3	17
189	Ethanol to distillate-range molecules using Cu/MgxAlOy catalysts with low Cu loadings. Applied Catalysis B: Environmental, 2022, 304, 120984.	10.8	16
190	Mechanistic Insights into the Hydrogenolysis of Levoglucosanol over Bifunctional Platinum Silica–Alumina Catalysts. ACS Catalysis, 2018, 8, 3743-3753.	5.5	15
191	Investigation of the Reaction Pathways of Biomassâ€Derived Oxygenate Conversion into Monoalcohols in Supercritical Methanol with CuMgAlâ€Mixedâ€Metal Oxide. ChemSusChem, 2018, 11, 4007-4017.	3.6	15
192	Computational Approach for Rapidly Predicting Temperatureâ€Dependent Polymer Solubilities Using Molecular‣cale Models. ChemSusChem, 2021, 14, 4307-4316.	3.6	15
193	11 DFT and experimental studies of C-C and C-O bond cleavage in ethanol and ethylene glycol on Pt catalysts. Studies in Surface Science and Catalysis, 2003, 145, 79-84.	1.5	14
194	Design of closed-loop recycling production of a Diels–Alder polymer from a biomass-derived difuran as a functional additive for polyurethanes. Green Chemistry, 2021, 23, 9479-9488.	4.6	14
195	Controlled hydrogenation of a biomass-derived platform chemical formed by aldol-condensation of 5-hydroxymethyl furfural (HMF) and acetone over Ru, Pd, and Cu catalysts. Green Chemistry, 2022, 24, 2146-2159.	4.6	14
196	Bio-based 1,5-Pentanediol as a Replacement for Petroleum-Derived 1,6-Hexanediol for Polyester Polyols, Coatings, and Adhesives. ACS Sustainable Chemistry and Engineering, 2022, 10, 5781-5791.	3.2	14
197	Effect of Sn on the Reactivity of Cu Surfaces. Journal of Physical Chemistry B, 2004, 108, 14062-14073.	1.2	13
198	Synthesis of Hexane-Tetrols and -Triols with Fixed Hydroxyl Group Positions and Stereochemistry from Methyl Glycosides over Supported Metal Catalysts. ACS Sustainable Chemistry and Engineering, 2020, 8, 800-805.	3.2	13

#	Article	IF	CITATIONS
199	Production of renewable C4–C6 monoalcohols from waste biomass-derived carbohydrate via aqueous-phase hydrodeoxygenation over Pt-ReO /Zr-P. Chemical Engineering Research and Design, 2018, 115, 2-7.	2.7	12
200	New Technologies are Needed to Improve the Recycling and Upcycling of Waste Plastics. ChemSusChem, 2021, 14, 3982-3984.	3.6	12
201	Oligomerization of 1-butene over carbon-supported CoOx and subsequent isomerization/hydroformylation to n-nonanal. Catalysis Communications, 2018, 114, 93-97.	1.6	11
202	Rational Design of Mixed Solvent Systems for Acid-Catalyzed Biomass Conversion Processes Using a Combined Experimental, Molecular Dynamics and Machine Learning Approach. Topics in Catalysis, 2020, 63, 649-663.	1.3	11
203	Solid-State NMR Studies of Solvent-Mediated, Acid-Catalyzed Woody Biomass Pretreatment for Enzymatic Conversion of Residual Cellulose. ACS Sustainable Chemistry and Engineering, 2020, 8, 6551-6563.	3.2	10
204	Ethylene oligomerization into linear olefins over cobalt oxide on carbon catalyst. Catalysis Science and Technology, 2021, 11, 3599-3608.	2.1	10
205	Kinetic stability of nitrogen-substituted sites in HY and silicalite from first principles. Journal of Catalysis, 2010, 270, 249-255.	3.1	9
206	Production of renewable alcohols from maple wood using supercritical methanol hydrodeoxygenation in a semi-continuous flowthrough reactor. Green Chemistry, 2020, 22, 8462-8477.	4.6	9
207	The Hydrodeoxygenation of Glycerol over NiMoS _x : Catalyst Stability and Activity at Hydropyrolysis Conditions. ChemCatChem, 2021, 13, 425-437.	1.8	9
208	Catalytic Conversion of Pyrolysis Oil to Alcohols and Alkanes in Supercritical Methanol over the CuMgAlO <i>_x</i> Catalyst. ACS Sustainable Chemistry and Engineering, 2021, 9, 2067-2079.	3.2	9
209	Renewable linear alpha-olefins by base-catalyzed dehydration of biologically-derived fatty alcohols. Green Chemistry, 2021, 23, 4338-4354.	4.6	9
210	Rates of levoglucosanol hydrogenolysis over BrÃ,nsted and Lewis acid sites on platinum silica-alumina catalysts synthesized by atomic layer deposition. Journal of Catalysis, 2020, 389, 111-120.	3.1	8
211	Hexane-1,2,5,6-tetrol as a Versatile and Biobased Building Block for the Synthesis of Sustainable (Chiral) Crystalline Mesoporous Polyboronates. ACS Sustainable Chemistry and Engineering, 2019, 7, 13430-13436.	3.2	7
212	Introduction to green chemistry and reaction engineering. Reaction Chemistry and Engineering, 2020, 5, 2131-2133.	1.9	7
213	What could be possible with mature biofuels technologies?. Biofuels, Bioproducts and Biorefining, 2009, 3, 105-107.	1.9	6
214	Catalytic Production of Glucose–Galactose Syrup from Greek Yogurt Acid Whey in a Continuousâ€Flow Reactor. ChemSusChem, 2020, 13, 791-802.	3.6	6
215	A Career in Catalysis: James A. Dumesic. ACS Catalysis, 2021, 11, 2310-2339.	5.5	5
216	Effect of catalyst support on cobalt catalysts for ethylene oligomerization into linear olefins. Catalysis Science and Technology, 2022, 12, 3639-3649.	2.1	5

#	Article	IF	CITATIONS
217	Mechanistic Insights into the Conversion of Biorenewable Levoglucosanol to Dideoxysugars. ACS Sustainable Chemistry and Engineering, 2020, 8, 16339-16349.	3.2	4
218	Reaction kinetics study of ethylene oligomerization into linear olefins over carbon-supported cobalt catalysts. Journal of Catalysis, 2021, 404, 954-963.	3.1	4
219	Catalytic conversion of cellulose to levoglucosenone using propylsulfonic acid functionalized SBA-15 and H2SO4 in tetrahydrofuran. Biomass and Bioenergy, 2022, 156, 106315.	2.9	4
220	On the integration of molecular dynamics, data science, and experiments for studying solvent effects on catalysis. Current Opinion in Chemical Engineering, 2022, 36, 100796.	3.8	4
221	Bio-based materials: general discussion. Faraday Discussions, 2017, 202, 121-139.	1.6	3
222	Production of Hexane-1,2,5,6-tetrol from Biorenewable Levoglucosanol over Pt-WO _{<i>x</i>} /TiO ₂ . ACS Sustainable Chemistry and Engineering, 2021, 9, 16123-16132.	3.2	3
223	Feedstocks and analysis: general discussion. Faraday Discussions, 2017, 202, 497-519.	1.6	2
224	Catalysis: The Technology Enabler for New, Low Carbon Energy Technologies. ChemCatChem, 2017, 9, 1521-1522.	1.8	1
225	Elucidation of reaction network and kinetics between cellulose-derived 1,2-propanediol and methanol for one-pot biofuel production. Green Chemistry, 2022, 24, 350-364.	4.6	1
226	Applications: Renewable Fuels and Chemicals. , 2011, , 239-262.		0
227	Advances in catalysis and bioprocess on conversions of biomass. Journal of the Taiwan Institute of Chemical Engineers, 2017, 79, $\nu.$	2.7	0
228	Bio-based chemicals: general discussion. Faraday Discussions, 2017, 202, 227-245.	1.6	0
229	Conversion technologies: general discussion. Faraday Discussions, 2017, 202, 371-389.	1.6	0
230	Investigation of the Reaction Pathways of Biomassâ€Derived Oxygenate Conversion into Monoalcohols in Supercritical Methanol with CuMgAlâ€Mixedâ€Metal Oxide. ChemSusChem, 2018, 11, 3995-3995.	3.6	0
231	Selective Cellulose Hydrogenolysis to Ethanol Using Ni@C Combined with Phosphoric Acid Catalysts. ChemSusChem, 2019, 12, 3881-3881.	3.6	0
232	Catalytic Conversion of Cellulose to Levoglucosenone Using Propylsulfonic Acid Functionalized Sba-15 and H2so4ÂIn Tetrahydrofuran. SSRN Electronic Journal, 0, , .	0.4	0
233	Producing Renewable Fuels from Wood. ChemistryViews, 0, , .	0.0	0