
Héctor BeltrÃ;n Mir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6145434/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of the oxidation states on the electrical properties of Fe-doped Pr2Zr2O7 pyrochlore. Journal of Materials Research and Technology, 2022, 16, 201-215.	2.6	7
2	The influence of Ca2+ and Zn2+ doping on the development of sustainable pigments based on GdFeO3 perovskite: From a reddish colour towards a pure black. Ceramics International, 2022, , .	2.3	1
3	The pH-dependent reactions in the sonochemical synthesis of luminescent fluorides: The quest for the formation of KY3F10 crystal phases. Ultrasonics Sonochemistry, 2022, 87, 106059.	3.8	2
4	Tuning the optical and photoluminescence properties of high efficient Eu3+-doped KY3F10phosphors by different synthetic approaches. Optics and Laser Technology, 2021, 136, 106734.	2.2	9
5	AN INSIDE VIEW OF INFRARED THERMOMETERS: AN APPROACH TO THE CHEMISTRY OF MATERIALS FOR HIGH LEVEL EDUCATION STUDENTS. , 2021, , .		0
6	A new series of environment-friendly reddish inorganic pigments based on AFeO3 (AÂ= Ln, Y) with high NIR solar reflectance. Journal of Materiomics, 2021, 7, 1061-1073.	2.8	12
7	Unraveling the superior role of dicarboxylic acids as surface chelators in Eu3+-doped yttrium fluorides: A systematic modulation of the crystal phases and morphologies for highly tuned optical performance. Journal of Alloys and Compounds, 2021, 883, 160847.	2.8	1
8	The unexplored δ-phase of KY3F10: toward novel Eu3+-doped nanoplates with a 'super-diamond' structure for optical applications. Journal of Materials Research and Technology, 2021, 15, 6940-6940.	2.6	3
9	Improvement in varistor properties of CaCu3Ti4O12 ceramics by chromium addition. Journal of Materials Science and Technology, 2020, 41, 12-20.	5.6	35
10	Study of the role of praseodymium and iron in an environment-friendly reddish orange pigment based on Fe doped Pr2Zr2O7: A multifunctional material. Journal of Alloys and Compounds, 2020, 845, 155841.	2.8	9
11	Toward Expanding the Optical Response of Ag2CrO4 and Bi2O3 by Their Laser-Mediated Heterojunction. Journal of Physical Chemistry C, 2020, 124, 26404-26414.	1.5	2
12	A WAY TO UNDERSTAND THE SOLID-STATE CHEMISTRY FOR HIGH LEVEL EDUCATION STUDENTS: THE CASE OF A CERAMIC PIGMENT. EDULEARN Proceedings, 2020, , .	0.0	1
13	Ag Nanoparticles/α-Ag2WO4 Composite Formed by Electron Beam and Femtosecond Irradiation as Potent Antifungal and Antitumor Agents. Scientific Reports, 2019, 9, 9927.	1.6	40
14	α-AgVO ₃ Decorated by Hydroxyapatite (Ca ₁₀ (PO ₄) ₆ (OH) ₂): Tuning Its Photoluminescence Emissions and Bactericidal Activity. Inorganic Chemistry, 2019, 58, 5900-5913.	1.9	22
15	Proofâ€ofâ€Concept Studies Directed toward the Formation of Metallic Ag Nanostructures from Ag 3 PO 4 Induced by Electron Beam and Femtosecond Laser. Particle and Particle Systems Characterization, 2019, 36, 1800533.	1.2	10
16	Laser and electron beam-induced formation of Ag/Cr structures on Ag ₂ CrO ₄ . Physical Chemistry Chemical Physics, 2019, 21, 6101-6111.	1.3	20
17	Designing biocompatible and multicolor fluorescent hydroxyapatite nanoparticles for cell-imaging applications. Materials Today Chemistry, 2019, 14, 100211.	1.7	14
18	Site-selective symmetries of Eu ³⁺ -doped BaTiO ₃ ceramics: a structural elucidation by optical spectroscopy. Journal of Materials Chemistry C, 2019, 7, 13976-13985.	2.7	12

HéCTOR BELTRÃin Mir

#	Article	IF	CITATIONS
19	Field-induced p-n transition in yttria-stabilized zirconia. Scientific Reports, 2019, 9, 18538.	1.6	16
20	Tailoring the Bactericidal Activity of Ag Nanoparticles/α-Ag ₂ WO ₄ Composite Induced by Electron Beam and Femtosecond Laser Irradiation: Integration of Experiment and Computational Modeling. ACS Applied Bio Materials, 2019, 2, 824-837.	2.3	30
21	OPTICAL SMOKE DETECTOR: AN APPROACH TO SEMICONDUCTORS FIELD FOR HIGH LEVEL EDUCATION STUDENTS. EDULEARN Proceedings, 2019, , .	0.0	Ο
22	Laser-induced formation of bismuth nanoparticles. Physical Chemistry Chemical Physics, 2018, 20, 13693-13696.	1.3	17
23	Towards the scale-up of the formation of nanoparticles on α-Ag2WO4 with bactericidal properties by femtosecond laser irradiation. Scientific Reports, 2018, 8, 1884.	1.6	42
24	Structural properties and self-activated photoluminescence emissions in hydroxyapatite with distinct particle shapes. Ceramics International, 2018, 44, 236-245.	2.3	36
25	Environmental-friendly red-orange ceramic pigment based on Pr and Fe co-doped Y2Zr2O7. Journal of the European Ceramic Society, 2018, 38, 2210-2217.	2.8	32
26	Laser/Electron Irradiation on Indium Phosphide (InP) Semiconductor: Promising Pathways to In Situ Formation of Indium Nanoparticles. Particle and Particle Systems Characterization, 2018, 35, 1800237.	1.2	12
27	From Complex Inorganic Oxides to Ag–Bi Nanoalloy: Synthesis by Femtosecond Laser Irradiation. ACS Omega, 2018, 3, 9880-9887.	1.6	19
28	Atmosphere- and Voltage-Dependent Electronic Conductivity of Oxide-Ion-Conducting Zr _{1–<i>x</i>} Y _{<i>x</i>} O _{2–<i>x</i>/2} Ceramics. Inorganic Chemistry, 2017, 56, 7081-7088.	1.9	22
29	A novel approach to obtain highly intense self-activated photoluminescence emissions in hydroxyapatite nanoparticles. Journal of Solid State Chemistry, 2017, 249, 64-69.	1.4	24
30	New red-shade environmental-friendly multifunctional pigment based on Tb and Fe doped Y2Zr2O7 for ceramic applications and cool roof coatings. Dyes and Pigments, 2016, 133, 33-40.	2.0	46
31	Internal barrier layer capacitor, nearest neighbor hopping, and variable range hopping conduction in Ba1â^'x Sr x TiO3â^'δ nanoceramics. Journal of Materials Science, 2016, 51, 7440-7450.	1.7	11
32	Theoretical and Experimental Insight on Ag ₂ CrO ₄ Microcrystals: Synthesis, Characterization, and Photoluminescence Properties. Inorganic Chemistry, 2016, 55, 8961-8970.	1.9	31
33	Spinel–rock salt transformation in LiCoMnO _{4â^' <i>δ</i>} . Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20140991.	1.0	21
34	Structural and optical properties of ZnS/MgNb2O6 heterostructures. Superlattices and Microstructures, 2015, 79, 180-192.	1.4	6
35	Pigments based on Cr and Sb doped TiO 2 prepared by microemulsion-mediated solvothermal synthesis for inkjet printing on ceramics. Dyes and Pigments, 2015, 116, 106-113.	2.0	28
36	Voltageâ€Dependent Bulk Resistivity of <scp><scp>SrTiO</scp></scp> ₃ : <scp>Mg</scp> Ceramics. Journal of the American Ceramic Society, 2014, 97, 2815-2824.	1.9	29

Héctor BeltrÃin Mir

#	Article	IF	CITATIONS
37	Field-enhanced bulk conductivity and resistive-switching in Ca-doped BiFeO ₃ ceramics. Physical Chemistry Chemical Physics, 2014, 16, 19408-19416.	1.3	29
38	SÃntesis, caracterización y evaluación eléctrica de circonatos de bario dopados con lantánidos trivalentes. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2014, 53, 60-68.	0.9	1
39	Synthesis, Structural Characterization, and Electrical Properties of New Oxygen-Deficient Tetragonal Tungsten Bronzes Ba ₂ NdTi _{2+<i>x</i>} Nb _{3–<i>x</i>} O _{15–<i>x</i>/i>/2} . Inorganic Chemistry, 2013, 52, 1729-1736.	1.9	28
40	Environmental-friendly yellow pigment based on Tb and M (M=Ca or Ba) co-doped Y2O3. Journal of the European Ceramic Society, 2013, 33, 3359-3368.	2.8	38
41	Nonâ€ohmic phenomena in Mnâ€doped BaTiO ₃ . Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 2267-2272.	0.8	11
42	Enhanced Conductivity and Nonlinear Voltage–Current Characteristics of Nonstoichiometric BaTiO ₃ Ceramics. Journal of the American Ceramic Society, 2011, 94, 2951-2962.	1.9	23
43	Voltageâ€Dependent Lowâ€Field Bulk Resistivity in BaTiO ₃ :Zn Ceramics. Journal of the American Ceramic Society, 2010, 93, 500-505.	1.9	35
44	Field enhanced bulk conductivity of acceptor-doped BaTi1â^'xCaxO3â^'x ceramics. Applied Physics Letters, 2010, 97, 062907.	1.5	41
45	Field enhanced bulk conductivity of BaTiO3 : Mg ceramics. Journal of Materials Chemistry, 2010, 20, 5335.	6.7	48
46	Polymorphism of BaTiO ₃ Acceptor Doped with Mn ³⁺ , Fe ³⁺ , and Ti ³⁺ . Journal of the American Ceramic Society, 2008, 91, 2364-2366.	1.9	18
47	Phase transition hysteresis and anomalous Curie–Weiss behavior of ferroelectric tetragonal tungsten bronzes Ba2RETi2Nb3O15:RE=Nd,Sm. Journal of Applied Physics, 2008, 104, .	1.1	44
48	Polymorphism and Dielectric Properties of Nb-Doped BaTiO3. Journal of the American Ceramic Society, 2007, 91, 071018043821002-???.	1.9	2
49	Nanocomposite ceramics based on La-doped BaTi2O5 and BaTiO3 with high temperature-independent permittivity and low dielectric loss. Journal of Electroceramics, 2007, 18, 277-282.	0.8	16
50	Synthesis and electrical properties of Nb-doped BaTiO3. Journal of Materials Chemistry, 2006, 16, 3114-3119.	6.7	57
51	Electrical properties of Fe-doped BaTiO3. Journal of Materials Chemistry, 2006, 16, 1626-1633.	6.7	59
52	Influence of the precursors on the formation and properties of the FexCr2â^'xO3 solid solution. Journal of the European Ceramic Society, 2006, 26, 1363-1370.	2.8	12
53	Comparison of the electrical properties of the new conductor Pr0.5Bi0.05Li0.35TiO3 prepared by sol-gel and ceramic methods. Physica Status Solidi (B): Basic Research, 2005, 242, 1924-1927.	0.7	9
54	Oxygen loss, semiconductivity, and positive temperature coefficient of resistance behavior in undoped cation-stoichiometric BaTiO3 ceramics. Journal of Applied Physics, 2005, 98, 094102.	1.1	40

HéCTOR BELTRÃin Mir

#	Article	IF	CITATIONS
55	Electrical properties of ferroelectric BaTi2O5 and dielectric Ba6Ti17O40 ceramics. Journal of Applied Physics, 2005, 97, 084104.	1.1	37
56	Environmental study of Cr2O3–Al2O3 green ceramic pigment synthesis. Journal of the European Ceramic Society, 2004, 24, 2087-2094.	2.8	50
57	Title is missing!. Journal of Sol-Gel Science and Technology, 2003, 26, 977-980.	1.1	20
58	Preparation and Characterization of Compositions Based on PbO-MgO-Nb2O5 Using the Sol-Gel Method. Journal of Sol-Gel Science and Technology, 2003, 26, 1061-1065.	1.1	6
59	Optimization of Praseodymiumâ€Doped Cerium Pigment Synthesis Temperature. Journal of the American Ceramic Society, 2003, 86, 425-430.	1.9	28
60	A Study of the Method of Synthesis and Chromatic Properties of the Cr-SnO2 Pigment. European Journal of Inorganic Chemistry, 2002, 2002, 2694-2700.	1.0	16
61	Ferroelectric Behavior of Pb(Mg1/3Nb2/3)O3 (PMN) Obtained by the Solâ^'Gel Method. Chemistry of Materials, 2001, 13, 415-419.	3.2	6
62	Solâ^'Gel Synthesis and Characterization of Pb(Mg1/3Nb2/3)O3(PMN) Ferroelectric Perovskite. Chemistry of Materials, 2000, 12, 400-405.	3.2	29
63	Influence of the precursors on the formation and the properties of ZnFe2O4. Journal of the European Ceramic Society, 1999, 19, 363-372.	2.8	35
64	Study of the effect of formamide and N,N-dimethylformamide on the synthesis of CdS nanoparticles in a SiO2 matrix by sol-gel method. Solid State Sciences, 1999, 1, 351-364.	1.5	5