List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6145236/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MAB21L4 regulates the TGF-β-induced expression of target genes in epidermal keratinocytes. Journal of Biochemistry, 2022, 171, 399-410.	1.7	3
2	Ets family proteins regulate the EMT transcription factors Snail and ZEB in cancer cells. FEBS Open Bio, 2022, 12, 1353-1364.	2.3	5
3	Neurotensin receptor 1 signaling promotes pancreatic cancer progression. Molecular Oncology, 2021, 15, 151-166.	4.6	17
4	ZEB1 and oncogenic Ras constitute a regulatory switch for stimulusâ€dependent E adherin downregulation. Cancer Science, 2021, 112, 205-216.	3.9	6
5	Group V Secretory Phospholipase A ₂ Regulates Endocytosis of Acetylated LDL by Transcriptional Activation of PGK1 in RAW264.7 Macrophage Cell Line. Journal of Atherosclerosis and Thrombosis, 2021, , .	2.0	2
6	TGF-β-induced cell motility requires downregulation of ARHGAPs to sustain Rac1 activity. Journal of Biological Chemistry, 2021, 296, 100545.	3.4	5
7	EHF suppresses cancer progression by inhibiting ETS1-mediated ZEB expression. Oncogenesis, 2021, 10, 26.	4.9	22
8	Structural basis for inhibitory effects of Smad7 on TGF-Î ² family signaling. Journal of Structural Biology, 2020, 212, 107661.	2.8	14
9	Dissociation of the AhR/ARNT complex by TGF-β/Smad signaling represses CYP1A1 gene expression and inhibits benze[a]pyrene-mediated cytotoxicity. Journal of Biological Chemistry, 2020, 295, 9033-9051.	3.4	21
10	Deubiquitylase USP25 prevents degradation of BCR-ABL protein and ensures proliferation of Ph-positive leukemia cells. Oncogene, 2020, 39, 3867-3878.	5.9	25
11	Lipidome-based rapid diagnosis with machine learning for detection of TGF-Î ² signalling activated area in head and neck cancer. British Journal of Cancer, 2020, 122, 995-1004.	6.4	9
12	Addiction of mesenchymal phenotypes on the FGF/FGFR axis in oral squamous cell carcinoma cells. PLoS ONE, 2019, 14, e0217451.	2.5	12
13	A comparative analysis of Smad-responsive motifs identifies multiple regulatory inputs for TGF-β transcriptional activation. Journal of Biological Chemistry, 2019, 294, 15466-15479.	3.4	18
14	Long Noncoding RNA <i>ELIT-1</i> Acts as a Smad3 Cofactor to Facilitate TGFβ/Smad Signaling and Promote Epithelial–Mesenchymal Transition. Cancer Research, 2019, 79, 2821-2838.	0.9	84
15	Transgenic Analyses in Drosophila Reveal That mCORL1 Is Functionally Distinct from mCORL2 and dCORL. G3: Genes, Genomes, Genetics, 2019, 9, 3781-3789.	1.8	4
16	Smad3–STAT3 crosstalk in pathophysiological contexts. Acta Biochimica Et Biophysica Sinica, 2018, 50, 82-90.	2.0	57
17	Reciprocal expression of Slug and Snail in human oral cancer cells. PLoS ONE, 2018, 13, e0199442.	2.5	52
18	Expression of ZEBs in gliomas is associated with invasive properties and histopathological grade. Oncology Letters, 2018, 16, 1758-1764.	1.8	9

#	Article	IF	CITATIONS
19	Repression of Smad3 by Stat3 and c-Ski/SnoN induces gefitinib resistance in lung adenocarcinoma. Biochemical and Biophysical Research Communications, 2017, 484, 269-277.	2.1	18
20	Ets1 and ESE1 reciprocally regulate expression of ZEB1/ZEB2, dependent on ERK1/2 activity, in breast cancer cells. Cancer Science, 2017, 108, 952-960.	3.9	42
21	Regulation of TGF-Î ² Family Signaling by Inhibitory Smads. Cold Spring Harbor Perspectives in Biology, 2017, 9, a022095.	5.5	327
22	Snail suppresses cellular senescence and promotes fibroblastâ€led cancer cell invasion. FEBS Open Bio, 2017, 7, 1586-1597.	2.3	17
23	Dual Roles for Epithelial Splicing Regulatory Proteins 1 (ESRP1) and 2 (ESRP2) in Cancer Progression. Advances in Experimental Medicine and Biology, 2016, 925, 33-40.	1.6	26
24	The potential role of regulator of Gâ€protein signaling 16 in cell motility mediated by δEF 1 family proteins. FEBS Letters, 2016, 590, 270-278.	2.8	10
25	<i>Î′</i> EF1 associates with DNMT1 and maintains DNA methylation of the Eâ€cadherin promoter in breast cancer cells. Cancer Medicine, 2015, 4, 125-135.	2.8	83
26	Maid is a negative regulator of transforming growth factor-β-induced cell migration. Journal of Biochemistry, 2015, 158, 435-444.	1.7	7
27	Arkadia enhances BMP signalling through ubiquitylation and degradation of Smad6. Journal of Biochemistry, 2015, 158, 61-71.	1.7	15
28	Epithelial Splicing Regulatory Proteins 1 (ESRP1) and 2 (ESRP2) Suppress Cancer Cell Motility via Different Mechanisms. Journal of Biological Chemistry, 2014, 289, 27386-27399.	3.4	133
29	A Smad3 and TTF-1/NKX2-1 complex regulates Smad4-independent gene expression. Cell Research, 2014, 24, 994-1008.	12.0	45
30	Phosphoinositide 5-phosphatases: how do they affect tumourigenesis?. Journal of Biochemistry, 2013, 153, 1-3.	1.7	4
31	Identification of integrin α3 as a molecular marker of cells undergoing epithelial–mesenchymal transition and of cancer cells with aggressive phenotypes. Cancer Science, 2013, 104, 1189-1197.	3.9	45
32	Oligodendrocyte Transcription Factor 1 (Olig1) Is a Smad Cofactor Involved in Cell Motility Induced by Transforming Growth Factor-β. Journal of Biological Chemistry, 2013, 288, 18911-18922.	3.4	19
33	Basolateral BMP Signaling in Polarized Epithelial Cells. PLoS ONE, 2013, 8, e62659.	2.5	22
34	A negative regulator or just an unconcerned passerby: phosphoinositide 3-kinase signalling in IL-12 production. Journal of Biochemistry, 2012, 152, 497-499.	1.7	3
35	Transcriptional and Post-transcriptional Regulation in TGF-Â-mediated epithelial-mesenchymal transition. Journal of Biochemistry, 2012, 151, 563-571.	1.7	49
36	TGF-β regulates isoform switching of FGF receptors and epithelial-mesenchymal transition. EMBO Journal, 2011, 30, 783-795.	7.8	205

#	Article	IF	CITATIONS
37	Glioma-initiating Cells Retain Their Tumorigenicity through Integration of the Sox Axis and Oct4 Protein. Journal of Biological Chemistry, 2011, 286, 41434-41441.	3.4	129
38	RB1CC1 Protein Positively Regulates Transforming Growth Factor-Î ² Signaling through the Modulation of Arkadia E3 Ubiquitin Ligase Activity. Journal of Biological Chemistry, 2011, 286, 32502-32512.	3.4	30
39	Encountering unpredicted off-target effects of pharmacological inhibitors. Journal of Biochemistry, 2011, 150, 1-3.	1.7	14
40	Hepatocyte growth factor activator (HGFA): a serine protease that links tissue injury to activation of hepatocyte growth factor. FEBS Journal, 2010, 277, 2208-2214.	4.7	61
41	Arkadia complexes with clathrin adaptor AP2 and regulates EGF signalling. Journal of Biochemistry, 2010, 148, 733-741.	1.7	15
42	Context-dependent regulation of the expression of c-Ski protein by Arkadia in human cancer cells. Journal of Biochemistry, 2010, 147, 545-554.	1.7	29
43	Smad7 Inhibits Transforming Growth Factor-Î ² Family Type I Receptors through Two Distinct Modes of Interaction. Journal of Biological Chemistry, 2010, 285, 30804-30813.	3.4	51
44	SKI and MEL1 Cooperate to Inhibit Transforming Growth Factor-Î ² Signal in Gastric Cancer Cells. Journal of Biological Chemistry, 2009, 284, 3334-3344.	3.4	74
45	VEGFR2-PLCÎ ³ 1 axis is essential for endothelial specification of VEGFR2+ vascular progenitor cells. Journal of Cell Science, 2009, 122, 3303-3311.	2.0	39
46	Arkadia represses the expression of myoblast differentiation markers through degradation of Ski and the Ski-bound Smad complex in C2C12 myoblasts. Bone, 2009, 44, 53-60.	2.9	13
47	Autocrine TGF-β Signaling Maintains Tumorigenicity of Glioma-Initiating Cells through Sry-Related HMG-Box Factors. Cell Stem Cell, 2009, 5, 504-514.	11.1	503
48	Chromatin Immunoprecipitation on Microarray Analysis of Smad2/3 Binding Sites Reveals Roles of ETS1 and TFAP2A in Transforming Growth Factor β Signaling. Molecular and Cellular Biology, 2009, 29, 172-186.	2.3	179
49	An Id-like molecule, HHM, is a synexpression group-restricted regulator of TGF-Î ² signalling. EMBO Journal, 2008, 27, 2955-2965.	7.8	51
50	Activation of MET receptor tyrosine kinase in ulcer surface epithelial cells undergoing restitution. Pathology International, 2008, 58, 462-464.	1.3	7
51	Ras signaling directs endothelial specification of VEGFR2+ vascular progenitor cells. Journal of Cell Biology, 2008, 181, 131-141.	5.2	42
52	Smurf2 Induces Ubiquitin-dependent Degradation of Smurf1 to Prevent Migration of Breast Cancer Cells. Journal of Biological Chemistry, 2008, 283, 35660-35667.	3.4	73
53	Arkadia Induces Degradation of SnoN and c-Ski to Enhance Transforming Growth Factor-Î ² Signaling. Journal of Biological Chemistry, 2007, 282, 20492-20501.	3.4	148
54	17β-Estradiol InducesIL-1α Gene Expression in Rheumatoid Fibroblast-Like Synovial Cells through Estrogen Receptor α (ERα) and Augmentation of Transcriptional Activity of Sp1 by Dissociating Histone Deacetylase 2 from ERα. Journal of Immunology, 2007, 178, 3059-3066.	0.8	39

#	Article	IF	CITATIONS
55	Transforming Growth Factor- \hat{I}^2 Promotes Survival of Mammary Carcinoma Cells through Induction of Antiapoptotic Transcription Factor DEC1. Cancer Research, 2007, 67, 9694-9703.	0.9	90
56	Inhibitory effect of c-Met mutants on the formation of branching tubules by a porcine aortic endothelial cell line. Cancer Science, 2006, 97, 1343-1350.	3.9	5
57	Nuclear and cytoplasmic c-Ski differently modulate cellular functions. Genes To Cells, 2006, 11, 1267-1280.	1.2	35
58	NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4-2) negatively regulates TGF-β (transforming growth factor-β) signalling by inducing ubiquitin-mediated degradation of Smad2 and TGF-β type I receptor. Biochemical Journal, 2005, 386, 461-470.	3.7	187
59	VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B–PDGFRβ signaling. Journal of Cell Science, 2005, 118, 3759-3768.	2.0	263
60	Hepatocyte Growth Factor Activator Inhibitor Type 1 (HAI-1) Is Required for Branching Morphogenesis in the Chorioallantoic Placenta. Molecular and Cellular Biology, 2005, 25, 5687-5698.	2.3	89
61	Interaction with Smad4 Is Indispensable for Suppression of BMP Signaling by c-Ski. Molecular Biology of the Cell, 2004, 15, 963-972.	2.1	59
62	c-Ski inhibits the TGF-β signaling pathway through stabilization of inactive Smad complexes on Smad-binding elements. Oncogene, 2004, 23, 5068-5076.	5.9	114
63	Negative regulation of transforming growth factor-β (TGF-β) signaling by WW domain-containing protein 1 (WWP1). Oncogene, 2004, 23, 6914-6923.	5.9	176
64	Activation of hepatocyte growth factor in monkey stomach following gastric mucosal injury. Journal of Gastroenterology, 2004, 39, 133-139.	5.1	6
65	Regeneration of injured intestinal mucosa is impaired in hepatocyte growth factor activator-deficient mice. Gastroenterology, 2004, 127, 1423-1435.	1.3	69
66	Arkadia amplifies TGF-Â superfamily signalling through degradation of Smad7. EMBO Journal, 2003, 22, 6458-6470.	7.8	195
67	TGF-β receptor kinase inhibitor enhances growth and integrity of embryonic stem cell–derived endothelial cells. Journal of Cell Biology, 2003, 163, 1303-1311.	5.2	172
68	Two Short Segments of Smad3 Are Important for Specific Interaction of Smad3 with c-Ski and SnoN. Journal of Biological Chemistry, 2003, 278, 531-536.	3.4	51
69	Structural Insight into Modest Binding of a Non-PXXP Ligand to the Signal Transducing Adaptor Molecule-2 Src Homology 3 Domain. Journal of Biological Chemistry, 2003, 278, 48162-48168.	3.4	47
70	SB-431542 and Gleevec inhibit transforming growth factor-beta-induced proliferation of human osteosarcoma cells. Cancer Research, 2003, 63, 7791-8.	0.9	103
71	Functional Characterization of Kunitz Domains in Hepatocyte Growth Factor Activator Inhibitor Type 1. Journal of Biological Chemistry, 2002, 277, 14053-14059.	3.4	61
72	Impairment of Activation of Hepatocyte Growth Factor Precursor into Its Mature Form in Rats with Liver Cirrhosis. Journal of Surgical Research, 2002, 106, 108-114.	1.6	19

#	Article	IF	CITATIONS
73	Exogenously Administered HGF Activator Augments Liver Regeneration through the Production of Biologically Active HGF. Biochemical and Biophysical Research Communications, 2002, 290, 475-481.	2.1	25
74	Targets of transcriptional regulation by two distinct type I receptors for transforming growth factorâ€Î² in human umbilical vein endothelial cells. Journal of Cellular Physiology, 2002, 193, 299-318.	4.1	204
75	Two major Smad pathways in TGFâ $\in \hat{I}^2$ superfamily signalling. Genes To Cells, 2002, 7, 1191-1204.	1.2	594
76	High Intensity ERK Signal Mediates Hepatocyte Growth Factor-induced Proliferation Inhibition of the Human Hepatocellular Carcinoma Cell Line HepG2. Journal of Biological Chemistry, 2001, 276, 40968-40976.	3.4	81
77	Mouse hepatocyte growth factor activator gene: its expression not only in the liver but also in the gastrointestinal tract. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2000, 1491, 295-302.	2.4	30
78	A Deubiquitinating Enzyme UBPY Interacts with the Src Homology 3 Domain of Hrs-binding Protein via a Novel Binding Motif PX(V/I)(D/N)RXXKP. Journal of Biological Chemistry, 2000, 275, 37481-37487.	3.4	199
79	Hepatocyte Growth Factor Activator Inhibitor Type 1 Is a Specific Cell Surface Binding Protein of Hepatocyte Growth Factor Activator (HGFA) and Regulates HGFA Activity in the Pericellular Microenvironment. Journal of Biological Chemistry, 2000, 275, 40453-40462.	3.4	114
80	Structural organization and chromosomal localization of the human hepatocyte growth factor activator gene. Phylogenetic and functional relationship with blood coagulation factor XII, urokinase, and tissue-type plasminogen activator. FEBS Journal, 1998, 258, 355-361.	0.2	31
81	Hepatocyte Growth Factor Activator Inhibitor, a Novel Kunitz-type Serine Protease Inhibitor. Journal of Biological Chemistry, 1997, 272, 6370-6376.	3.4	241
82	Purification and Characterization of a Novel Protease Inhibitor Specific to Hepatocyte Growth Factor Activator. , 1997, , 403-407.		0
83	Dissociation of C-fos Induction and Mitogen-Activated-Protein Kinase Activation from the Hepatocyte-Growth-Factor-Induced Motility Response in Human Gastric Carcinoma Cells. FEBS Journal, 1996, 236, 476-481.	0.2	15
84	Activation of Hepatocyte Growth Factor in the Injured Tissues Is Mediated by Hepatocyte Growth Factor Activator. Journal of Biological Chemistry, 1996, 271, 3615-3618.	3.4	199
85	Hepatocyte growth factor remains as an inactive single chain after partial hepatectomy or unilateral nephrectomy. FEBS Letters, 1995, 362, 220-224.	2.8	20
86	Activation of Hepatocyte Growth Factor by two Homologous Proteases, Blood-Coagulation Factor XIIa and Hepatocyte Growth Factor Activator. FEBS Journal, 1995, 229, 257-261.	0.2	135
87	Tyrosine Phosphorylation of β-Catenin and Plakoglobin Enhanced by Hepatocyte Growth Factor and Epidermal Growth Factor in Human Carcinoma Cells. Cell Adhesion and Communication, 1994, 1, 295-305.	1.7	402
88	Characterization of the promoter region of the rat hepatocyteâ€growthâ€factor/scatterâ€factor gene. FEBS Journal, 1993, 213, 113-119.	0.2	57
89	Stimulation of prostaglandin production by hepatocyte growth factor in human gastric carcinoma cells. FEBS Letters, 1993, 334, 331-334.	2.8	13
90	Functional characterization of human hepatocyte growth factor mutants obtained by deletion of structural domains. Biochemistry, 1992, 31, 9555-9561.	2.5	72

#	Article	IF	CITATIONS
91	Characterization of hepatocyte-growth-factor receptors on Meth A cells. FEBS Journal, 1992, 204, 857-864.	0.2	40
92	Hepatocyte Growth Factor and Transforming Growth FactorBETA. Stimulate both Cell Growth and Migration of Human Gastric Adenocarcinoma Cells Cell Structure and Function, 1992, 17, 185-190.	1.1	38
93	An alternatively processed mRNA generated from human hepatocyte growth factor gene. FEBS Journal, 1991, 197, 15-22.	0.2	100
94	Primary structure of rat hepatocyte growth factor and induction of its mRNA during liver regeneration following hepatic injury. FEBS Journal, 1990, 193, 375-381.	0.2	108
95	Molecular cloning and sequence analysis of cDNA for human hepatocyte growth factor. Biochemical and Biophysical Research Communications, 1989, 163, 967-973.	2.1	670