Yi Bing Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6144976/publications.pdf

Version: 2024-02-01

17	1,398	759233	888059
papers	citations	h-index	g-index
18	18	18	1690
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Essentiality for rice fertility and alternative splicing of OsSUT1. Plant Science, 2022, 314, 111065.	3.6	7
2	Overexpression of OsPHT1;4 Increases Phosphorus Utilization Efficiency and Improves the Agronomic Traits of Rice cv. Wuyunjing 7. Agronomy, 2022, 12, 1332.	3.0	2
3	Rice SUT and SWEET Transporters. International Journal of Molecular Sciences, 2021, 22, 11198.	4.1	27
4	Inhibition of <i>OsSWEET11</i> function in mesophyll cells improves resistance of rice to sheath blight disease. Molecular Plant Pathology, 2018, 19, 2149-2161.	4.2	68
5	Using Phylogenetic Analysis to Investigate Eukaryotic Gene Origin. Journal of Visualized Experiments, 2018, , .	0.3	8
6	Essential Role of Sugar Transporter OsSWEET11 During the Early Stage of Rice Grain Filling. Plant and Cell Physiology, 2017, 58, 863-873.	3.1	174
7	Rice potassium transporter <scp>O</scp> s <scp>HAK</scp> 1 is essential for maintaining potassiumâ€mediated growth and functions in salt tolerance over low and high potassium concentration ranges. Plant, Cell and Environment, 2015, 38, 2747-2765.	5.7	242
8	The Role of a Potassium Transporter OsHAK5 in Potassium Acquisition and Transport from Roots to Shoots in Rice at Low Potassium Supply Levels Â. Plant Physiology, 2014, 166, 945-959.	4.8	286
9	Functional analyses of a putative plasma membrane Na+/H+ antiporter gene isolated from salt tolerant Helianthus tuberosus. Molecular Biology Reports, 2014, 41, 5097-5108.	2.3	24
10	Functional role of oligomerization for bacterial and plant SWEET sugar transporter family. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3685-94.	7.1	233
11	Alteration of nutrient allocation and transporter genes expression in rice under N, P, K, and Mg deficiencies. Acta Physiologiae Plantarum, 2012, 34, 939-946.	2.1	58
12	Light restored root growth of Arabidopsis with constitutive ethylene response. Acta Physiologiae Plantarum, 2011, 33, 667-674.	2.1	5
13	ARAG1, an ABA-responsive DREB gene, plays a role in seed germination and drought tolerance of rice. Annals of Botany, 2010, 105, 401-409.	2.9	113
14	Proton pump OsA8 is linked to phosphorus uptake and translocation in rice. Journal of Experimental Botany, 2009, 60, 557-565.	4.8	43
15	Interactive effects of potassium and sodium on root growth and expression of K/Na transporter genes in rice. Plant Growth Regulation, 2009, 57, 271-280.	3.4	33
16	Overexpression of OsERF1, a novel rice ERF gene, up-regulates ethylene-responsive genes expression besides affects growth and development in Arabidopsis. Journal of Plant Physiology, 2008, 165, 1717-1725.	3.5	71
17	OsRAF is an ethylene responsive and root abundant factor gene of rice. Plant Growth Regulation, 2007, 54, 55-61.	3.4	4