Vincenzo Luca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6144389/publications.pdf

Version: 2024-02-01

26 papers 1,439 citations

331670 21 h-index 25 g-index

26 all docs

26 docs citations

times ranked

26

2051 citing authors

#	Article	IF	CITATIONS
1	Magnetic beads combined with carbon black-based screen-printed electrodes for COVID-19: A reliable and miniaturized electrochemical immunosensor for SARS-CoV-2 detection in saliva. Biosensors and Bioelectronics, 2021, 171, 112686.	10.1	331
2	Esculentin $(1-21)$, an amphibian skin membrane-active peptide with potent activity on both planktonic and biofilm cells of the bacterial pathogen Pseudomonas aeruginosa. Cellular and Molecular Life Sciences, 2013, 70, 2773-2786.	5.4	131
3	How Many Antimicrobial Peptide Molecules Kill a Bacterium? The Case of PMAP-23. ACS Chemical Biology, 2014, 9, 2003-2007.	3.4	130
4	d-Amino acids incorporation in the frog skin-derived peptide esculentin-1a(1-21)NH2 is beneficial for its multiple functions. Amino Acids, 2015, 47, 2505-2519.	2.7	70
5	Temporins A and B Stimulate Migration of HaCaT Keratinocytes and Kill Intracellular Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2014, 58, 2520-2527.	3. 2	68
6	Isomerization of an Antimicrobial Peptide Broadens Antimicrobial Spectrum to Gram-Positive Bacterial Pathogens. PLoS ONE, 2012, 7, e46259.	2.5	60
7	Naturally Occurring Peptides from Rana temporaria: Antimicrobial Properties and More. Current Topics in Medicinal Chemistry, 2015, 16, 54-64.	2.1	60
8	Enhanced Amphiphilic Profile of a Short \hat{I}^2 -Stranded Peptide Improves Its Antimicrobial Activity. PLoS ONE, 2015, 10, e0116379.	2.5	57
9	Cell-Density Dependence of Host-Defense Peptide Activity and Selectivity in the Presence of Host Cells. ACS Chemical Biology, 2017, 12, 52-56.	3.4	55
10	Esculentin-1a(1-21)NH2: a frog skin-derived peptide for microbial keratitis. Cellular and Molecular Life Sciences, 2015, 72, 617-627.	5.4	53
11	The effect of d-amino acid substitution on the selectivity of temporin L towards target cells: Identification of a potent anti-Candida peptide. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 652-660.	2.6	51
12	Synergistic fungicidal activity of the lipopeptide bacillomycin D with amphotericin B against pathogenic <i>Candida</i> species. FEMS Yeast Research, 2015, 15, fov022.	2.3	41
13	Alanine scanning analysis and structure–function relationships of the frogâ€skin antimicrobial peptide temporinâ€1Ta. Journal of Peptide Science, 2011, 17, 358-365.	1.4	35
14	Novel α-MSH Peptide Analogues with Broad Spectrum Antimicrobial Activity. PLoS ONE, 2013, 8, e61614.	2.5	35
15	Rational modification of a dendrimeric peptide with antimicrobial activity: consequences on membrane-binding and biological properties. Amino Acids, 2016, 48, 887-900.	2.7	33
16	Membrane interaction and antibacterial properties of two mildly cationic peptide diastereomers, bombinins H2 and H4, isolated from Bombina skin. European Biophysics Journal, 2011, 40, 577-588.	2.2	32
17	Fighting microbial infections: A lesson from amphibian skin-derived esculentin-1 peptides. Peptides, 2015, 71, 286-295.	2.4	32
18	Esculentin-1a Derived Antipseudomonal Peptides: Limited Induction of Resistance and Synergy with Aztreonam. Protein and Peptide Letters, 2019, 25, 1155-1162.	0.9	31

#	Article	IF	CITATIONS
19	Bacillomycin D and its combination with amphotericin B: promising antifungal compounds with powerful antibiofilm activity and wound-healing potency. Journal of Applied Microbiology, 2016, 120, 289-300.	3.1	28
20	Membrane perturbing activities and structural properties of the frog-skin derived peptide Esculentin- $1a(1-21)$ NH2 and its Diastereomer Esc $(1-21)$ -1c: Correlation with their antipseudomonal and cytotoxic activity. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 2327-2339.	2.6	27
21	Aggregation determines the selectivity of membrane-active anticancer and antimicrobial peptides: The case of killerFLIP. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183107.	2.6	26
22	Anti-Candida activity of $1\hat{a}\in$ "18 fragment of the frog skin peptide esculentin-1b: in vitro and in vivo studies in a Caenorhabditis elegans infection model. Cellular and Molecular Life Sciences, 2013, 71, 2535-46.	5.4	22
23	Effects of Aib residues insertion on the structural–functional properties of the frog skin-derived peptide esculentin-1a(1–21)NH2. Amino Acids, 2017, 49, 139-150.	2.7	20
24	Rapid inactivation of SARS-CoV-2 with LED irradiation of visible spectrum wavelengths. Journal of Photochemistry and Photobiology, 2021, 8, 100082.	2.5	9
25	How Many AMP Molecules Kill a Bacterium? Spectroscopic Determination of PMAP-23 Binding to E. Coli. Biophysical Journal, 2014, 106, 292a.	0.5	2
26	Bombinins., 2013,, 331-337.		0