Ram Ray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6144346/publications.pdf

Version: 2024-02-01

394286 302012 1,654 48 19 39 citations h-index g-index papers 51 51 51 1634 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Parameterization of the modified water cloud model (MWCM) using normalized difference vegetation index (NDVI) for winter wheat crop: a case study from Punjab, India. Geocarto International, 2022, 37, 1560-1573.	1.7	5
2	Prediction of soil erosion risk using earth observation data under recent emission scenarios of CMIP6. Geocarto International, 2022, 37, 7041-7064.	1.7	13
3	What is the impact of COVID-19 pandemic on global carbon emissions?. Science of the Total Environment, 2022, 816, 151503.	3.9	88
4	Influence of mobile phone and internet technology on income of rural farmers: Evidence from Khyber Pakhtunkhwa Province, Pakistan. Technology in Society, 2022, 68, 101866.	4.8	44
5	Socioeconomic Determinants of the Awareness and Adoption of Apple Production Practices: A Case study of Balochistan, Pakistan. Sarhad Journal of Agriculture, 2022, 38, .	0.0	2
6	Bridge to the future: Important lessons from 20Âyears of ecosystem observations made by the OzFlux network. Global Change Biology, 2022, 28, 3489-3514.	4.2	14
7	Can Cooperative Supports and Adoption of Improved Technologies Help Increase Agricultural Income? Evidence from a Recent Study. Land, 2022, 11, 361.	1.2	19
8	Quantifying surface soil organic carbon distribution globally during the COVID-19 pandemic using satellite data. Geocarto International, 2022, 37, 12149-12170.	1.7	1
9	Sustainable Growing Areas for Sugarcane in Sri Lanka Under a Changing Climate. Sugar Tech, 2022, 24, 1801-1813.	0.9	1
10	Mobile Internet Technology Adoption for Sustainable Agriculture: Evidence from Wheat Farmers. Applied Sciences (Switzerland), 2022, 12, 4902.	1.3	26
11	Development of Monthly Reference Evapotranspiration Machine Learning Models and Mapping of Pakistan—A Comparative Study. Water (Switzerland), 2022, 14, 1666.	1.2	10
12	Does the Adoption of Mobile Internet Technology Promote Wheat Productivity? Evidence from Rural Farmers. Sustainability, 2022, 14, 7614.	1.6	9
13	An integrated approach to estimate surface soil moisture in agricultural lands. Geocarto International, 2021, 36, 1646-1664.	1.7	8
14	Assessing the effects of forest biomass reductions on forest health and streamflow. Hydrological Processes, 2021, 35, e14114.	1.1	5
15	Current Progress and Future Prospects of Agriculture Technology: Gateway to Sustainable Agriculture. Sustainability, 2021, 13, 4883.	1.6	84
16	Patterns of Nutrient Dynamics within and below the Rootzone of Collard Greens Grown under Different Organic Amendment Types and Rates. Sustainability, 2021, 13, 6857.	1.6	2
17	Toward Cleaner Production: Can Mobile Phone Technology Help Reduce Inorganic Fertilizer Application? Evidence Using a National Level Dataset. Land, 2021, 10, 1023.	1.2	16
18	Unmanned Aerial Vehicles in Hydrology and Water Management: Applications, Challenges, and Perspectives. Water Resources Research, 2021, 57, e2021WR029925.	1.7	44

#	Article	IF	CITATIONS
19	Potential Role of Technology Innovation in Transformation of Sustainable Food Systems: A Review. Agriculture (Switzerland), 2021, 11, 984.	1.4	41
20	Applications of Remote Sensing in Precision Agriculture: A Review. Remote Sensing, 2020, 12, 3136.	1.8	380
21	Remote Sensing Approaches and Related Techniques to Map and Study Landslides. , 2020, , .		6
22	Crop Protection Under Drought Stress. , 2020, , 145-170.		5
23	Evaluation of atmospheric and terrestrial effects in the carbon cycle for forest and grassland ecosystems using a remote sensing and modeling approach. Agricultural and Forest Meteorology, 2020, 295, 108187.	1.9	9
24	Soil CO2 emission in response to organic amendments, temperature, and rainfall. Scientific Reports, 2020, 10, 5849.	1.6	57
25	Parameterizing the modified water cloud model to improve soil moisture data retrieval using vegetation models. Hungarian Geographical Bulletin, 2020, 69, 17-26.	0.4	8
26	Quantifying the Impacts of Land-Use and Climate on Carbon Fluxes Using Satellite Data across Texas, U.S Remote Sensing, 2019, 11, 1733.	1.8	4
27	Estimating land surface variables and sensitivity analysis for CLM and VIC simulations using remote sensing products. Science of the Total Environment, 2018, 633, 470-483.	3.9	23
28	Assessing the spatiotemporal distributions of evapotranspiration in the Three Gorges Reservoir Region of China using remote sensing data. Journal of Mountain Science, 2018, 15, 2676-2692.	0.8	8
29	Effects of Drought on Crop Production and Cropping Areas in Texas. Agricultural and Environmental Letters, 2018, 3, 170037.	0.8	7 3
30	Integration of Convolutional Neural Network and Thermal Images into Soil Moisture Estimation. , 2018, , .		17
31	Modeling regional landslide susceptibility using dynamic soil moisture profiles. Journal of Mountain Science, 2018, 15, 1807-1824.	0.8	4
32	Soil as a Basic Nexus Tool: Soils at the Center of the Food–Energy–Water Nexus. Current Sustainable/Renewable Energy Reports, 2017, 4, 117-129.	1.2	25
33	Simulations of energy balance components at snow-dominated montane watershed by land surface models. Environmental Earth Sciences, 2017, 76, 1.	1.3	11
34	Emerging Stress and Relative Resiliency of Giant Sequoia Groves Experiencing Multiyear Dry Periods in a Warming Climate. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 3063-3075.	1.3	24
35	Evaluation and Inter-Comparison of Satellite Soil Moisture Products Using In Situ Observations over Texas, U.S Water (Switzerland), 2017, 9, 372.	1.2	27
36	Moisture Stress Indicators in Giant Sequoia Groves in the Southern Sierra Nevada of California, USA. Vadose Zone Journal, 2016, 15, 1-19.	1.3	2

#	Article	IF	CITATIONS
37	Integrating Runoff Generation and Flow Routing in Susquehanna River Basin to Characterize Key Hydrologic Processes Contributing to Maximum Annual Flood Events. Journal of Hydrologic Engineering - ASCE, 2016, 21, 04016026.	0.8	13
38	Estimation of Land Surface Energy Fluxes using CLM and VIC model. Journal of Wetlands Research, 2016, 18, 166-172.	0.2	0
39	Evapotranspiration models of different complexity for multiple land cover types. Hydrological Processes, 2012, 26, 2962-2972.	1.1	10
40	Regional landslide susceptibility: spatiotemporal variations under dynamic soil moisture conditions. Natural Hazards, 2011, 59, 1317-1337.	1.6	26
41	Comparing satellite derived precipitation datasets using the Hillslope River Routing (HRR) model in the Congo River Basin. Hydrological Processes, 2011, 25, 3216-3229.	1.1	83
42	Impacts of Unsaturated Zone Soil Moisture and Groundwater Table on Slope Instability. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2010, 136, 1448-1458.	1.5	64
43	Landslide susceptibility mapping using downscaled AMSR-E soil moisture: A case study from Cleveland Corral, California, US. Remote Sensing of Environment, 2010, 114, 2624-2636.	4.6	102
44	A comparison of models for estimating potential evapotranspiration for Florida land cover types. Journal of Hydrology, 2009, 373, 366-376.	2.3	118
45	Landslide Susceptibility Mapping using Remotely Sensed Soil Moisture. , 2008, , .		3
46	Relationships among remotely sensed soil moisture, precipitation and landslide events. Natural Hazards, 2007, 43, 211-222.	1.6	114
47	Modeling Antecedent Soil Moisture to Constrain Rainfall Thresholds for Shallow Landslides Occurrence. , 0, , .		5
48	Introductory Chapter: Importance of Investigating Landslide Hazards. , 0, , .		1