
Maria P Abbracchio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6144073/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	International Union of Pharmacology LVIII: Update on the P2Y G Protein-Coupled Nucleotide Receptors: From Molecular Mechanisms and Pathophysiology to Therapy. Pharmacological Reviews, 2006, 58, 281-341.	7.1	1,147
2	Purinoceptors: Are there families of P2X and P2Y purinoceptors?. , 1994, 64, 445-475.		990
3	Purinergic signalling in the nervous system: an overview. Trends in Neurosciences, 2009, 32, 19-29.	4.2	733
4	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G proteinâ€coupled receptors. British Journal of Pharmacology, 2019, 176, S21-S141.	2.7	519
5	Trophic actions of extracellular nucleotides and nucleosides on glial and neuronal cells. Trends in Neurosciences, 1996, 19, 13-18.	4.2	409
6	Purinergic Signalling: Pathophysiological Roles. The Japanese Journal of Pharmacology, 1998, 78, 113-145.	1.2	392
7	Characterization of the UDP-glucose receptor (re-named here the P2Y14 receptor) adds diversity to the P2Y receptor family. Trends in Pharmacological Sciences, 2003, 24, 52-55.	4.0	382
8	The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes receptor. EMBO Journal, 2006, 25, 4615-4627.	3.5	380
9	Purinergic signalling: From normal behaviour to pathological brain function. Progress in Neurobiology, 2011, 95, 229-274.	2.8	357
10	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G proteinâ€coupled receptors. British Journal of Pharmacology, 2021, 178, S27-S156.	2.7	337
11	Towards a revised nomenclature for P1 and P2 receptors. Trends in Pharmacological Sciences, 1997, 18, 79-82.	4.0	315
12	Nucleotide-mediated calcium signaling in rat cortical astrocytes: Role of P2X and P2Y receptors. Glia, 2003, 43, 218-230.	2.5	235
13	Antitumor Effects of Cannabidiol, a Nonpsychoactive Cannabinoid, on Human Glioma Cell Lines. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 838-845.	1.3	225
14	Purinergic signalling in inflammation of the central nervous system. Trends in Neurosciences, 2009, 32, 79-87.	4.2	212
15	The Recently Identified P2Y-Like Receptor GPR17 Is a Sensor of Brain Damage and a New Target for Brain Repair. PLoS ONE, 2008, 3, e3579.	1.1	192
16	To be or not to be (inflamed) – is that the question in anti-inflammatory drug therapy of neurodegenerative disorders?. Trends in Pharmacological Sciences, 2005, 26, 517-525.	4.0	169
17	Phenotypic Changes, Signaling Pathway, and Functional Correlates of GPR17-expressing Neural Precursor Cells during Oligodendrocyte Differentiation. Journal of Biological Chemistry, 2011, 286, 10593-10604.	1.6	154
18	Pathophysiological roles of extracellular nucleotides in glial cells: differential expression of purinergic receptors in resting and activated microglia. Brain Research Reviews, 2005, 48, 144-156.	9.1	143

#	Article	IF	CITATIONS
19	Structural and functional rejuvenation of the aged brain by an approved anti-asthmatic drug. Nature Communications, 2015, 6, 8466.	5.8	139
20	Modulation of astroglial cell proliferation by analogues of adenosine and ATP in primary cultures of rat striatum. Neuroscience, 1994, 59, 67-76.	1.1	137
21	A role for P2X7in microglial proliferation. Journal of Neurochemistry, 2006, 99, 745-758.	2.1	127
22	Blockade of A2A adenosine receptors prevents basic fibroblast growth factor-induced reactive astrogliosis in rat striatal primary astrocytes. Glia, 2003, 43, 190-194.	2.5	126
23	Detrimental and protective action of microglial extracellular vesicles on myelin lesions: astrocyte involvement in remyelination failure. Acta Neuropathologica, 2019, 138, 987-1012.	3.9	120
24	Cloning, pharmacological characterisation and distribution of the rat G-protein-coupled P2Y13 receptor. Biochemical Pharmacology, 2004, 68, 113-124.	2.0	111
25	Calcitonin Gene-Related Peptide-Mediated Enhancement of Purinergic Neuron/Glia Communication by the Algogenic Factor Bradykinin in Mouse Trigeminal Ganglia from Wild-Type and R192Q Ca _v 2.1 Knock-In Mice: Implications for Basic Mechanisms of Migraine Pain. Journal of Neuroscience. 2011. 31. 3638-3649.	1.7	111
26	The P2Y-like receptor GPR17 as a sensor of damage and a new potential target in spinal cord injury. Brain, 2009, 132, 2206-2218.	3.7	105
27	Roles of P2 receptors in glial cells: focus on astrocytes. Purinergic Signalling, 2006, 2, 595-604.	1.1	102
28	Functions, dysfunctions and possible therapeutic relevance of adenosine A2A receptors in Huntington's disease. Progress in Neurobiology, 2007, 81, 331-348.	2.8	102
29	The GPR17 receptor in NG2 expressing cells: Focus on <i>in vivo</i> cell maturation and participation in acute trauma and chronic damage. Glia, 2011, 59, 1958-1973.	2.5	102
30	Adenosine A3Receptor Agonists Protect HL-60 and U-937 Cells from Apoptosis Induced by A3Antagonists. Biochemical and Biophysical Research Communications, 1997, 232, 317-322.	1.0	101
31	Adenosine-induced cell death: evidence for receptor-mediated signalling. Apoptosis: an International Journal on Programmed Cell Death, 1999, 4, 197-211.	2.2	98
32	Purinoceptor-mediated calcium signaling in primary neuron-glia trigeminal cultures. Cell Calcium, 2008, 43, 576-590.	1.1	90
33	Temporomandibular Joint Inflammation Activates Glial and Immune Cells in Both the Trigeminal Ganglia and in the Spinal Trigeminal Nucleus. Molecular Pain, 2010, 6, 1744-8069-6-89.	1.0	90
34	Brain Adenosine Receptors as Targets for Therapeutic Intervention in Neurodegenerative Diseases. Annals of the New York Academy of Sciences, 1999, 890, 79-92.	1.8	89
35	Purinoceptor nomenclature: A status report. Drug Development Research, 1993, 28, 207-213.	1.4	88
36	The A3Adenosine Receptor Mediates Cell Spreading, Reorganization of Actin Cytoskeleton, and Distribution of Bcl-xL: Studies in Human Astroglioma Cells. Biochemical and Biophysical Research Communications, 1997, 241, 297-304.	1.0	88

#	Article	IF	CITATIONS
37	Peripheral benzodiazepine receptor ligands: mitochondrial transmembrane potential depolarization and apoptosis induction in rat C6 glioma cells. Biochemical Pharmacology, 2004, 68, 125-134.	2.0	87
38	A Novel Action for Adenosine: Apoptosis of Astroglial Cells in Rat-Brain Primary Cultures. Biochemical and Biophysical Research Communications, 1995, 213, 908-915.	1.0	85
39	Changes of peripheral A 2A adenosine receptors in chronic heart failure and cardiac transplantation. FASEB Journal, 2003, 17, 280-282.	0.2	85
40	Characterization of the Ca2+ responses evoked by ATP and other nucleotides in mammalian brain astrocytes. British Journal of Pharmacology, 1997, 121, 1700-1706.	2.7	84
41	Aberrant amplification of A 2A receptor signaling in striatal cells expressing mutant huntingtin. FASEB Journal, 2001, 15, 1245-1247.	0.2	84
42	Characterization of the signalling pathways involved in ATP and basic fibroblast growth factor-induced astrogliosis. British Journal of Pharmacology, 1997, 121, 1692-1699.	2.7	83
43	Pathophysiological Role of Purines and Pyrimidines in Neurodevelopment: Unveiling New Pharmacological Approaches to Congenital Brain Diseases. Frontiers in Pharmacology, 2017, 8, 941.	1.6	82
44	Factors influencing the phagocytosis, neoplastic transformation, and cytotoxicity of particulate nickel compounds in tissue culture systems. Toxicology and Applied Pharmacology, 1981, 60, 313-323.	1.3	79
45	Activation of the A 3 adenosine receptor affects cell cycle progression and cell growth. Naunyn-Schmiedeberg's Archives of Pharmacology, 2000, 361, 225-234.	1.4	79
46	Modulation of Apoptosis by Adenosine in the Central Nervous System: a Possible Role for the A3Receptor Annals of the New York Academy of Sciences, 1997, 825, 11-22.	1.8	77
47	Aberrant A 2A receptor function in peripheral blood cells in Huntington's disease. FASEB Journal, 2003, 17, 1-16.	0.2	75
48	Early and transient alteration of adenosine A2A receptor signaling in a mouse model of Huntington disease. Neurobiology of Disease, 2006, 23, 44-53.	2.1	75
49	Apoptosis by 2-chloro-2′-deoxy-adenosine and 2-chloro-adenosine in human peripheral blood mononuclear cells. Neurochemistry International, 1998, 32, 493-504.	1.9	74
50	Cyclo-oxygenase-2 mediates P2Y receptor-induced reactive astrogliosis. British Journal of Pharmacology, 1999, 126, 563-567.	2.7	74
51	The role of oligodendrocyte precursor cells expressing the GPR17 receptor in brain remodeling after stroke. Cell Death and Disease, 2017, 8, e2871-e2871.	2.7	72
52	Microglia is a Key Player in the Reduction of Stroke Damage Promoted by the New Antithrombotic Agent Ticagrelor. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 979-988.	2.4	71
53	P2Y ₂ receptor antagonists as antiâ€allodynic agents in acute and subâ€chronic trigeminal sensitization: Role of satellite glial cells. Glia, 2015, 63, 1256-1269.	2.5	70
54	A3Adenosine Receptors in Human Astrocytoma Cells: Agonist-Mediated Desensitization, Internalization, and Down-Regulation. Molecular Pharmacology, 2002, 62, 1373-1384.	1.0	69

#	Article	IF	CITATIONS
55	Induction of COX-2 and reactive gliosis by P2Y receptors in rat cortical astrocytes is dependent on ERK1/2 but independent of calcium signalling. Journal of Neurochemistry, 2002, 83, 1285-1296.	2.1	69
56	CysLT1 leukotriene receptor antagonists inhibit the effects of nucleotides acting at P2Y receptors. Biochemical Pharmacology, 2005, 71, 115-125.	2.0	67
57	Extrinsic Purinergic Regulation of Neural Stem/Progenitor Cells: Implications for CNS Development and Repair. Stem Cell Reviews and Reports, 2012, 8, 755-767.	5.6	66
58	GPR17 expressing NG2â€Glia: Oligodendrocyte progenitors serving as a reserve pool after injury. Glia, 2016, 64, 287-299.	2.5	66
59	Frontal Affinity Chromatographyâ^'Mass Spectrometry Useful for Characterization of New Ligands for GPR17 Receptor. Journal of Medicinal Chemistry, 2010, 53, 3489-3501.	2.9	64
60	Expression and contribution of satellite glial cells purinoceptors to pain transmission in sensory ganglia: an update. Neuron Glia Biology, 2010, 6, 31-42.	2.0	64
61	CNS remyelination as a novel reparative approach to neurodegenerative diseases: The roles of purinergic signaling and the P2Y-like receptor GPR17. Neuropharmacology, 2016, 104, 82-93.	2.0	64
62	Regulation of A2B adenosine receptor functioning by tumour necrosis factor a in human astroglial cells. Journal of Neurochemistry, 2004, 91, 1180-1190.	2.1	62
63	Key concepts and critical issues on epoetin and filgrastim biosimilars. A position paper from the Italian Society of Hematology, Italian Society of Experimental Hematology, and Italian Group for Bone Marrow Transplantation. Haematologica, 2011, 96, 937-942.	1.7	62
64	The phagocytosis and transforming activity of crystalline metal sulfide particles are related to their negative surface charge. Carcinogenesis, 1982, 3, 175-180.	1.3	61
65	Prolonged in vitro exposure of rat brain slices to adenosine analogues: Selective desensitization of adenosine A1 but not A2 receptors. European Journal of Pharmacology, 1992, 227, 317-324.	2.7	60
66	CysLT1 receptor is a target for extracellular nucleotide-induced heterologous desensitization: a possible feedback mechanism in inflammation. Journal of Cell Science, 2005, 118, 5625-5636.	1.2	59
67	Effects of ATP analogues and basic fibroblast growth factor on astroglial cell differentiation in primary cultures of rat striatum. International Journal of Developmental Neuroscience, 1995, 13, 685-693.	0.7	57
68	P1 receptors and cytokine secretion. Purinergic Signalling, 2007, 3, 13-25.	1.1	56
69	Expression of the new P2Y-like receptor GPR17 during oligodendrocyte precursor cell maturation regulates sensitivity to ATP-induced death. Glia, 2011, 59, 363-378.	2.5	56
70	MiR-125a-3p timely inhibits oligodendroglial maturation and is pathologically up-regulated in human multiple sclerosis. Scientific Reports, 2016, 6, 34503.	1.6	55
71	Microglial vesicles improve post-stroke recovery by preventing immune cell senescence and favoring oligodendrogenesis. Molecular Therapy, 2021, 29, 1439-1458.	3.7	55
72	Changes of the GPR17 receptor, a new target for neurorepair, in neurons and glial cells in patients with traumatic brain injury. Purinergic Signalling, 2013, 9, 451-462.	1.1	54

#	Article	IF	CITATIONS
73	In silico identification of new ligands for GPR17: a promising therapeutic target for neurodegenerative diseases. Journal of Computer-Aided Molecular Design, 2011, 25, 743-752.	1.3	53
74	Development of an immobilized GPR17 receptor stationary phase for binding determination using frontal affinity chromatography coupled to mass spectrometry. Analytical Biochemistry, 2009, 384, 123-129.	1.1	50
75	UDPâ€glucose enhances outward K ⁺ currents necessary for cell differentiation and stimulates cell migration by activating the GPR17 receptor in oligodendrocyte precursors. Glia, 2013, 61, 1155-1171.	2.5	50
76	Different pathways of apoptosis revealed by 2-chloro-adenosine and deoxy-D-ribose in mammalian astroglial cells. Journal of Neuroscience Research, 1997, 47, 372-383.	1.3	49
77	P2 receptors in human heart: upregulation of P2X6 in patients undergoing heart transplantation, interaction with TNF1± and potential role in myocardial cell death. Journal of Molecular and Cellular Cardiology, 2005, 39, 929-939.	0.9	48
78	GPR17: Molecular modeling and dynamics studies of the 3-D structure and purinergic ligand binding features in comparison with P2Y receptors. BMC Bioinformatics, 2008, 9, 263.	1.2	48
79	Functional characterization of two isoforms of the P2Y-like receptor GPR17: [³⁵ S]GTPÎ ³ S binding and electrophysiological studies in 1321N1 cells. American Journal of Physiology - Cell Physiology, 2009, 297, C1028-C1040.	2.1	48
80	Oxygen–glucose deprivation increases the enzymatic activity and the microvesicle-mediated release of ectonucleotidases in the cells composing the blood–brain barrier. Neurochemistry International, 2011, 59, 259-271.	1.9	48
81	P1 and P2 receptors in cell growth and differentiation. , 1996, 39, 393-406.		46
82	The recently deorphanized GPR80 (GPR99) proposed to be the P2Y15 receptor is not a genuine P2Y receptor. Trends in Pharmacological Sciences, 2005, 26, 8-9.	4.0	46
83	Oxysterols act as promiscuous ligands of class-A GPCRs: In silico molecular modeling and in vitro validation. Cellular Signalling, 2014, 26, 2614-2620.	1.7	46
84	The ubiquitin ligase Mdm2 controls oligodendrocyte maturation by intertwining mTOR with G protein-coupled receptor kinase 2 in the regulation of GPR17 receptor desensitization. Glia, 2015, 63, 2327-2339.	2.5	46
85	Adenosine A3 receptors and viability of astrocytes. , 1998, 45, 379-386.		43
86	Adenosine, the imperfect endogenous anti-ischemic cardio-neuroprotector. Brain Research Bulletin, 2000, 52, 75-82.	1.4	42
87	Regulation of PC12 cell survival and differentiation by the new P2Y-like receptor GPR17. Cellular Signalling, 2010, 22, 697-706.	1.7	42
88	Cytoplasmic dissolution of phagocytized crystalline nickel sulfide particles: A prerequisite for nuclear uptake of nickel. Journal of Toxicology and Environmental Health - Part A: Current Issues, 1982, 9, 663-676.	1.1	41
89	Adenosine A3 receptor agonist-induced neurotoxicity in rat cerebellar granule neurons. , 1997, 40, 267-273.		41
90	A Key Role for Caspase-2 and Caspase-3 in the Apoptosis Induced by 2-Chloro-2′-deoxy-adenosine (Cladribine) and 2-Chloro-adenosine in Human Astrocytoma Cells. Molecular Pharmacology, 2003, 63, 1437-1447.	1.0	41

#	Article	IF	CITATIONS
91	Early phenotypic asymmetry of sister oligodendrocyte progenitor cells after mitosis and its modulation by aging and extrinsic factors. Glia, 2015, 63, 271-286.	2.5	41
92	Apoptosis induced by 2-chloro-adenosine and 2-chloro-2?-deoxy-adenosine in a human astrocytoma cell line: Differential mechanisms and possible clinical relevance. , 2000, 60, 388-400.		40
93	European Stroke Prevention Study-2 results: serendipitous demonstration of neuroprotection induced by endogenous adenosine accumulation?. Trends in Pharmacological Sciences, 1998, 19, 14-16.	4.0	39
94	Modulation of Cyclooxygenaseâ \in and Brain Reactive Astrogliosis by Purinergic P2 Receptors. Annals of the New York Academy of Sciences, 2001, 939, 54-62.	1.8	39
95	Pathophysiological Roles of P2 Receptors in Glial Cells. Novartis Foundation Symposium, 0, , 91-106.	1.2	39
96	Purinergic trophic signalling in glial cells: functional effects and modulation of cell proliferation, differentiation, and death. Purinergic Signalling, 2012, 8, 539-557.	1.1	38
97	The Regulated Expression, Intracellular Trafficking, and Membrane Recycling of the P2Y-like Receptor GPR17 in Oli-neu Oligodendroglial Cells. Journal of Biological Chemistry, 2013, 288, 5241-5256.	1.6	38
98	Functional genomic analyses highlight a shift in <i>Gpr17</i> â€regulated cellular processes in oligodendrocyte progenitor cells and underlying myelin dysregulation in the aged mouse cerebrum. Aging Cell, 2021, 20, e13335.	3.0	38
99	Denervation and hyperinnervation in the nervous system of diabetic animals. II. Monoaminergic and peptidergic alterations in the diabetic encephalopathy. Journal of Neuroscience Research, 1989, 24, 362-368.	1.3	37
100	Differential local tissue permissiveness influences the final fate of <scp>GPR</scp> 17â€expressing oligodendrocyte precursors in two distinct models of demyelination. Glia, 2018, 66, 1118-1130.	2.5	37
101	Does GRK–β arrestin machinery work as a "switch on―for GPR17-mediated activation of intracellular signaling pathways?. Cellular Signalling, 2014, 26, 1310-1325.	1.7	36
102	Abnormal Upregulation of GPR17 Receptor Contributes to Oligodendrocyte Dysfunction in SOD1 G93A Mice. International Journal of Molecular Sciences, 2020, 21, 2395.	1.8	36
103	The regulation of ionic nickel uptake and cytotoxicity by specific amino acids and serum components. Biological Trace Element Research, 1982, 4, 289-301.	1.9	35
104	Biological abnormalities of peripheral A2A receptors in a large representation of polyglutamine disorders and Huntington's disease stages. Neurobiology of Disease, 2007, 27, 36-43.	2.1	35
105	Different properties of P2X7 receptor in hippocampal and cortical astrocytes. Purinergic Signalling, 2009, 5, 233-240.	1.1	35
106	Purines regulate adult brain subventricular zone cell functions: Contribution of reactive astrocytes. Glia, 2014, 62, 428-439.	2.5	35
107	Improvement of fiber connectivity and functional recovery after stroke by montelukast, an available and safe anti-asthmatic drug. Pharmacological Research, 2019, 142, 223-236.	3.1	35
108	Regulation and signaling of the GPR17 receptor in oligodendroglial cells. Glia, 2020, 68, 1957-1967.	2.5	35

#	Article	IF	CITATIONS
109	Adenosine receptors linked to adenylate cyclase activity in human neuroblastoma cells: Modulation during cell differentiation. Neuroscience, 1989, 30, 819-825.	1.1	34
110	Chapter 27 Signalling mechanisms involved in P2Y receptor-mediated reactive astrogliosis. Progress in Brain Research, 1999, 120, 333-342.	0.9	34
111	Upregulation of A2A adenosine receptor expression by TNF-α in PBMC of patients with CHF: a regulatory mechanism of inflammation. Journal of Cardiac Failure, 2005, 11, 67-73.	0.7	34
112	Role of purinergic signalling in neuro-immune cells and adult neural progenitors. Frontiers in Bioscience - Landmark, 2011, 16, 2326.	3.0	32
113	Purines and cell death. , 1996, 39, 442-449.		30
114	A novel gliotic P2 receptor mediating cyclooxygenase-2 induction in rat and human astrocytes. Journal of the Autonomic Nervous System, 2000, 81, 3-9.	1.9	29
115	The A ₃ Adenosine Receptor Induces Cytoskeleton Rearrangement in Human Astrocytoma Cells via a Specific Action on Rho Proteins. Annals of the New York Academy of Sciences, 2001, 939, 63-73.	1.8	29
116	Forced unbinding of GPR17 ligands from wild type and R255I mutant receptor models through a computational approach. BMC Structural Biology, 2010, 10, 8.	2.3	29
117	Purple Corn Extract as Anti-allodynic Treatment for Trigeminal Pain: Role of Microglia. Frontiers in Cellular Neuroscience, 2018, 12, 378.	1.8	29
118	In vivo silencing of miRâ€125aâ€3p promotes myelin repair in models of white matter demyelination. Glia, 2020, 68, 2001-2014.	2.5	29
119	Agonist-Induced Desensitization/Resensitization of Human G Protein-Coupled Receptor 17: A Functional Cross-Talk between Purinergic and Cysteinyl-Leukotriene Ligands. Journal of Pharmacology and Experimental Therapeutics, 2011, 338, 559-567.	1.3	28
120	Denervation and hyperinnervation in the nervous system of diabetic animals: III. Functional alterations of G proteins in diabetic encephalopathy. Journal of Neuroscience Research, 1989, 24, 517-523.	1.3	27
121	Regulation of Erythropoietin Receptor Activity in Endothelial Cells by Different Erythropoietin (EPO) Derivatives: An in Vitro Study. International Journal of Molecular Sciences, 2013, 14, 2258-2281.	1.8	27
122	Adenosine modulates the dopaminergic function in the nigro-striatal system by interacting with striatal dopamine dependent adenylate cyclase. Pharmacological Research Communications, 1987, 19, 275-286.	0.2	26
123	Resistance of Human Astrocytoma Cells to Apoptosis Induced by Mitochondria-Damaging Agents: Possible Implications for Anticancer Therapy. Journal of Pharmacology and Experimental Therapeutics, 2005, 314, 825-837.	1.3	25
124	Pharmacological Properties and Biological Functions of the GPR17 Receptor, a Potential Target for Neuro-Regenerative Medicine. Advances in Experimental Medicine and Biology, 2017, 1051, 169-192.	0.8	24
125	Surface Plasmon Resonance as a Tool for Ligand Binding Investigation of Engineered GPR17 Receptor, a G Protein Coupled Receptor Involved in Myelination. Frontiers in Chemistry, 2019, 7, 910.	1.8	24
126	Pathophysiological roles of P2 receptors in glial cells. Novartis Foundation Symposium, 2006, 276, 91-103; discussion 103-12, 275-81.	1.2	24

#	Article	IF	CITATIONS
127	Cardiomyocyte death induced by ischaemic/hypoxic stress is differentially affected by distinct purinergic P2 receptors. Journal of Cellular and Molecular Medicine, 2012, 16, 1074-1084.	1.6	21
128	Adenosine- and 2-chloro-adenosine-induced cytopathic effects on myoblastic cells and myotubes: involvement of different intracellular mechanisms. Neuromuscular Disorders, 2000, 10, 436-446.	0.3	20
129	SNX27, a protein involved in down syndrome, regulates GPR17 trafficking and oligodendrocyte differentiation. Clia, 2016, 64, 1437-1460.	2.5	20
130	Basal astrocyte and microglia activation in the central nervous system of Familial Hemiplegic Migraine Type I mice. Cephalalgia, 2019, 39, 1809-1817.	1.8	20
131	In Memoriam Geoffrey Burnstock: Creator of Purinergic Signaling. Function, 2020, 1, .	1.1	20
132	Shortâ€ŧerm TNFâ€Alpha treatment induced A _{2B} adenosine receptor desensitization in human astroglial cells. Journal of Cellular Biochemistry, 2008, 104, 150-161.	1.2	19
133	Involvement of arachidonic acid metabolites in β-adrenoceptor desensitization: Functional and biochemical studies. European Journal of Pharmacology, 1984, 106, 601-606.	1.7	18
134	Expression of dual Nucleotides/Cysteinyl‣eukotrienes Receptor <scp>GPR</scp> 17 in early trafficking of cardiac stromal cells after myocardial infarction. Journal of Cellular and Molecular Medicine, 2014, 18, 1785-1796.	1.6	18
135	Behavioral teratology: an inappropriate term for some uninterpretable effects. Trends in Pharmacological Sciences, 1988, 9, 13-15.	4.0	17
136	Synthesis and pharmacological characterization of 2-(4-chloro-3-hydroxyphenyl)ethylamine and N,N-dialkyl derivatives as dopamine receptor ligands. Journal of Medicinal Chemistry, 1992, 35, 4408-4414.	2.9	17
137	Activation and desensitization of rat A3-adenosine receptors by selective adenosine derivatives and xanthine-7-ribosides. , 1998, 44, 97-105.		17
138	A new role for the P2Y-like GPR17 receptor in the modulation of multipotency of oligodendrocyte precursor cells in vitro. Purinergic Signalling, 2016, 12, 661-672.	1.1	17
139	Methylazoxymethanol-induced microencephaly: persistent increase of cortical somatostatin-like immunoreactivity. Developmental Brain Research, 1989, 47, 156-159.	2.1	16
140	Deorphanisation of G protein-coupled receptors: A tool to provide new insights in nervous system pathophysiology and new targets for psycho-active drugs. Neurochemistry International, 2008, 52, 339-351.	1.9	16
141	Chronic inflammatory diseases: Do immunological patterns drive the choice of biotechnology drugs? A critical review. Autoimmunity, 2014, 47, 287-306.	1.2	16
142	Development of the first in vivo GPR17 ligand through an iterative drug discovery pipeline: A novel disease-modifying strategy for multiple sclerosis. PLoS ONE, 2020, 15, e0231483.	1.1	16
143	Adenosine Signaling in Glioma Cells. Advances in Experimental Medicine and Biology, 2020, 1202, 13-33.	0.8	16
144	Differences in surface properties of amorphous and crystalline metal sulfides may explain their toxicological potency. Chemosphere, 1981, 10, 897-908.	4.2	15

#	Article	IF	CITATIONS
145	Proteasome Inhibitors Potentiate Etoposide-Induced Cell Death in Human Astrocytoma Cells Bearing a Mutated p53 Isoform. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 1424-1434.	1.3	15
146	A Rapid and Efficient Immunoenzymatic Assay to Detect Receptor Protein Interactions: G Protein-Coupled Receptors. International Journal of Molecular Sciences, 2014, 15, 6252-6264.	1.8	15
147	Selective activity of bamifylline on adenosine A1-receptors in rat brain. Pharmacological Research Communications, 1987, 19, 537-545.	0.2	14
148	β-Adrenoceptor de sensitization in rat lung: Functional and biochemical aspects. European Journal of Pharmacology, 1983, 89, 35-42.	1.7	13
149	A _{2b} receptor mediates adenosine inhibition of taurine efflux from pituicytes. Biology of the Cell, 2007, 99, 445-454.	0.7	13
150	Opposite effects of uracil and adenine nucleotides on the survival of murine cardiomyocytes. Journal of Cellular and Molecular Medicine, 2008, 12, 522-536.	1.6	13
151	Comparison and optimization of transient transfection methods at human astrocytoma cell line 1321N1. Analytical Biochemistry, 2011, 414, 300-302.	1.1	13
152	Intertwining extracellular nucleotides and their receptors with Ca ²⁺ in determining adult neural stem cell survival, proliferation and final fate. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150433.	1.8	13
153	A promiscuous recognition mechanism between GPR17 and SDF-1: Molecular insights. Cellular Signalling, 2016, 28, 631-642.	1.7	13
154	Dipeptidyl peptidase-4 inhibitors and sulfonylureas prevent the progressive impairment of the nigrostriatal dopaminergic system induced by diabetes during aging. Neurobiology of Aging, 2020, 89, 12-23.	1.5	13
155	Diabetes-induced alterations of central nervous system G proteins. Molecular and Chemical Neuropathology, 1992, 17, 259-272.	1.0	12
156	Actin Cytoskeleton as a Target for 2-Chloro Adenosine: Evidence for Induction of Apoptosis in C2C12 Myoblastic Cells. Biochemical and Biophysical Research Communications, 1997, 238, 361-366.	1.0	12
157	The Distribution of GPR17-Expressing Cells Correlates with White Matter Inflammation Status in Brain Tissues of Multiple Sclerosis Patients. International Journal of Molecular Sciences, 2021, 22, 4574.	1.8	12
158	Arachidonic acid metabolites and lung \hat{l}^2 -adrenoceptor desensitization. Pharmacological Research Communications, 1986, 18, 93-110.	0.2	11
159	Adenosine Signaling in Glioma Cells. Advances in Experimental Medicine and Biology, 2013, 986, 13-30.	0.8	11
160	Novel in vitro Experimental Approaches to Study Myelination and Remyelination in the Central Nervous System. Frontiers in Cellular Neuroscience, 2021, 15, 748849.	1.8	11
161	Early alterations of Gi/Go protein-dependent transductional processes in the retina of diabetic animals. Journal of Neuroscience Research, 1991, 29, 196-200.	1.3	10
162	Adenosine receptors in rat basophilic leukaemia cells: transductional mechanisms and effects on 5â€hydroxytryptamine release. British Journal of Pharmacology, 1992, 105, 405-411.	2.7	10

#	Article	IF	CITATIONS
163	Purinoceptors on Glial Cells of the Central Nervous System: Functional and Pathologic Implications. , 1995, , 271-280.		10
164	Trophic Roles of P2 Purinoceptors in Central Nervous System Astroglial Cells. Novartis Foundation Symposium, 1996, 198, 142-148.	1.2	10
165	Arachidonic acid metabolites induced β-adrenoceptor densitization in rat lung in vitro. Prostaglandins, 1985, 30, 799-809.	1.2	9
166	Prolonged agonist exposure induces imbalance of A1 and A2 receptor-mediated functions in rat brain slices. Drug Development Research, 1993, 28, 364-368.	1.4	9
167	The expanding field of purinergic signalling. Trends in Neurosciences, 2009, 32, 1.	4.2	9
168	Nonprofit foundations spur translational research. Trends in Pharmacological Sciences, 2014, 35, 552-555.	4.0	9
169	Using peripheral blood mononuclear cells to determine proteome profiles in human cardiac failure. European Journal of Heart Failure, 2008, 10, 749-757.	2.9	8
170	Pathway-Focused Profiling of Oligodendrocytes Over-Expressing miR-125a-3p Reveals Alteration of Wnt and Cell-to-Cell Signaling. Cellular and Molecular Neurobiology, 2021, 41, 105-114.	1.7	8
171	P2Y receptors in brain astroglial cells: Identification of a gliotic P2Y receptor coupled to activation of a calcium-independent ras/ERK1/2 pathway. Drug Development Research, 2003, 59, 161-170.	1.4	7
172	Steps towards Collective Sustainability in Biomedical Research. Trends in Molecular Medicine, 2018, 24, 429-432.	3.5	7
173	Prenatal Stress Impairs Spinal Cord Oligodendrocyte Maturation via BDNF Signaling in the Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis. Cellular and Molecular Neurobiology, 2022, 42, 1225-1240.	1.7	7
174	In vivo modulation of striatal phosphoproteins by dopaminergic agents. European Journal of Pharmacology, 1989, 172, 321-328.	2.7	6
175	Purinoceptors in the central nervous system. , 1996, 39, 361-370.		6
176	The history of the Purine Club: a tribute to Prof. Geoffrey Burnstock. Purinergic Signalling, 2021, 17, 127-134.	1.1	6
177	P2Y receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	6
178	FUNCTIONAL AND BIOCHEMICAL MODIFICATIONS OF LUNG βâ€ADRENORECEPTORS AFTER <i>IN VIVO</i> DESENSITIZATION: PREVENTION BY INDOMETHACIN. Autonomic and Autacoid Pharmacology, 1986, 6, 47-51.	0.7	5
179	Adenosine A1 receptors in rat brain synaptosomes: Transductional mechanisms, effects on glutamate release, and preservation after metabolic inhibition. Drug Development Research, 1995, 35, 119-129.	1.4	5
180	Two distinct P2Y receptors are involved in purine- and pyrimidine-evoked Ca2+ elevation in mammalian brain astrocytic cultures. Drug Development Research, 2001, 52, 122-132.	1.4	4

#	Article	IF	CITATIONS
181	Ventral tegmental area/substantia nigra and prefrontal cortex rodent organotypic brain slices as an integrated model to study the cellular changes induced by oxygen/glucose deprivation and reperfusion: Effect of neuroprotective agents. Neurochemistry International, 2014, 66, 43-54.	1.9	4
182	Purinergic Receptors on Oligodendrocyte Progenitors: Promising Targets for Myelin Repair in Multiple Sclerosis?. Frontiers in Pharmacology, 2020, 11, 629618.	1.6	4
183	Adrenergic-prostaglandin interactions in the respiratory system. Prostaglandins Leukotrienes and Essential Fatty Acids, 1990, 40, 85-91.	1.0	3
184	β-Adrenoceptor desensitization induced by antigen challenge in guinea-pig trachea. European Journal of Pharmacology, 1990, 178, 21-27.	1.7	3
185	2-Chloro-adenosine Induces a Glutamate-Dependent Calcium Response in C2C12 Myotubes. Biochemical and Biophysical Research Communications, 2000, 277, 546-551.	1.0	3
186	Enhanced apoptosis of peripheral blood mononuclear cells in cardiac transplanted patients undergoing chronic immunosuppressive treatment. Transplant Immunology, 2002, 10, 269-275.	0.6	3
187	Intracellular phosphorylation of chloro-adenosine analogs is a prerequisite for activation of caspase-3 and induction of apoptosis in human astrocytoma cells. Drug Development Research, 2003, 58, 396-404.	1.4	3
188	Biosimilars and safety issues. Leukemia and Lymphoma, 2009, 50, 656-658.	0.6	3
189	Biochemical and immunological aspects of protein aggregation in neurodegenerative diseases. Journal of the Iranian Chemical Society, 2014, 11, 1503-1512.	1.2	3
190	P2Y receptors in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	3
191	Involvement of GPR17 in Neuronal Fibre Outgrowth. International Journal of Molecular Sciences, 2021, 22, 11683.	1.8	3
192	Cellular effects of ornithine decarboxylase induction in cells maintained with a salts/glucose medium. Life Sciences, 1981, 28, 937-944.	2.0	2
193	Adenosine receptors in rat brain synaptosomes: Receptor characterization and relationships with glutamate release. Drug Development Research, 1993, 28, 359-363.	1.4	2
194	Disclosing apoptosis in the CNS. Trends in Pharmacological Sciences, 1999, 20, 129-131.	4.0	2
195	Identification of a novel P2 receptor associated with cyclooxygenase-2 upregulation and reactive astrogliosis. Drug Development Research, 2001, 53, 148-157.	1.4	2
196	Perspectives on Geoff Burnstock as researcher, teacher and friend. Biochemical Pharmacology, 2021, 187, 114395.	2.0	2
197	Reply to: †The discovery of a new class of synaptic transmitters in smooth muscle fifty years ago and amelioration of coronary artery thrombosis'. Acta Physiologica, 2013, 208, 139-140.	1.8	1
198	Response. Neurotoxicology and Teratology, 1989, 11, 329.	1.2	0

#	Article	IF	CITATIONS
199	G-proteins and diabetic encephalopathy: molecular mechanisms underlying the functional alterations. Pharmacological Research, 1992, 25, 109-110.	3.1	0
200	Purines '96: Molecular, pharmacological and therapeutic advances. , 1996, 39, 203-203.		0
201	International meeting "Purines 2010: adenosine nucleosides and nucleotides in biomedicineâ€. Purinergic Signalling, 2010, 6, 293-296.	1.1	0