
Lili Tao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6144011/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers. Nanoscale, 2019, 11, 2577-2593.	2.8	236
2	High-responsivity UV-Vis Photodetector Based on Transferable WS2 Film Deposited by Magnetron Sputtering. Scientific Reports, 2016, 6, 20343.	1.6	230
3	NIR II-responsive photon upconversion through energy migration in an ytterbium sublattice. Nature Photonics, 2020, 14, 760-766.	15.6	217
4	Constructing Interfacial Energy Transfer for Photon Up―and Down onversion from Lanthanides in a Core–Shell Nanostructure. Angewandte Chemie - International Edition, 2016, 55, 12356-12360.	7.2	118
5	Preparation and characterization of few-layer MoS ₂ nanosheets and their good nonlinear optical responses in the PMMA matrix. Nanoscale, 2014, 6, 9713-9719.	2.8	98
6	Self-sensitization induced upconversion of Er ³⁺ in core–shell nanoparticles. Nanoscale, 2018, 10, 17949-17957.	2.8	96
7	Enabling Photon Upconversion and Precise Control of Donor–Acceptor Interaction through Interfacial Energy Transfer. Advanced Science, 2018, 5, 1700667.	5.6	86
8	Core–shell nanoarchitecture: a strategy to significantly enhance white-light upconversion of lanthanide-doped nanoparticles. Journal of Materials Chemistry C, 2013, 1, 4313.	2.7	60
9	Probing Energy Migration through Precise Control of Interfacial Energy Transfer in Nanostructure. Advanced Materials, 2019, 31, e1806308.	11.1	60
10	Vertically standing PtSe ₂ film: a saturable absorber for a passively mode-locked Nd:LuVO ₄ laser. Photonics Research, 2018, 6, 750.	3.4	56
11	Fabrication of Covalently Functionalized Graphene Oxide Incorporated Solid-State Hybrid Silica Gel Glasses and Their Improved Nonlinear Optical Response. Journal of Physical Chemistry C, 2013, 117, 23108-23116.	1.5	51
12	Optical limiting properties of a few-layer MoS ₂ /PMMA composite under excitation of ultrafast laser pulses. Journal of Materials Chemistry C, 2019, 7, 495-502.	2.7	46
13	2D van der Waals heterostructures: processing, optical properties and applications in ultrafast photonics. Materials Horizons, 2020, 7, 2903-2921.	6.4	44
14	Thicknessâ€Dependent Optical Properties and Inâ€Plane Anisotropic Raman Response of the 2D βâ€In 2 S 3. Advanced Optical Materials, 2019, 7, 1901085.	3.6	39
15	Non‣ayered Te/In ₂ S ₃ Tunneling Heterojunctions with Ultrahigh Photoresponsivity and Fast Photoresponse. Small, 2022, 18, e2200445.	5.2	38
16	Graphene/In ₂ S ₃ van der Waals Heterostructure for Ultrasensitive Photodetection. ACS Photonics, 2018, 5, 4912-4919.	3.2	36
17	Tri-channel photon emission of lanthanides in lithium-sublattice core-shell nanostructures for multiple anti-counterfeiting. Chemical Engineering Journal, 2020, 397, 125451.	6.6	35
18	Passively Q-Switched Nd:YVO4 Laser Using WS2 Saturable Absorber Fabricated by Radio Frequency Magnetron Sputtering Deposition. Journal of Lightwave Technology, 2017, 35, 4120-4124.	2.7	33

Lili Tao

#	Article	IF	CITATIONS
19	Technique and model for modifying the saturable absorption (SA) properties of 2D nanofilms by considering interband exciton recombination. Journal of Materials Chemistry C, 2018, 6, 7501-7511.	2.7	32
20	Tunable upconversion of holmium sublattice through interfacial energy transfer for anti-counterfeiting. Nanoscale, 2021, 13, 4812-4820.	2.8	32
21	Enhanced Photocatalytic Activity of WS2 Film by Laser Drilling to Produce Porous WS2/WO3 Heterostructure. Scientific Reports, 2017, 7, 3125.	1.6	31
22	Controllable growth of large-area atomically thin ReS2 films and their thickness-dependent optoelectronic properties. Applied Physics Letters, 2019, 114, .	1.5	23
23	Hydrothermal synthesis of WSe2 films and their application in high-performance photodetectors. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	22
24	Nonlinear optical properties of PtTe ₂ based saturable absorbers for ultrafast photonics. Journal of Materials Chemistry C, 2022, 10, 5124-5133.	2.7	20
25	Novel two-dimensional semi-metallic NiTe2 based saturable absorber for ultrafast mode-locked fiber laser. Infrared Physics and Technology, 2022, 123, 104195.	1.3	19
26	Direct growth of Cu2ZnSnS4 on three-dimensional porous reduced graphene oxide thin films as counter electrode with high conductivity and excellent catalytic activity for dye-sensitized solar cells. Journal of Materials Science, 2018, 53, 2748-2757.	1.7	18
27	Silver nanoparticle-decorated graphene oxide for surface-enhanced Raman scattering detection and optical limiting applications. Journal of Materials Science, 2018, 53, 573-580.	1.7	18
28	Luminescence: Probing Energy Migration through Precise Control of Interfacial Energy Transfer in Nanostructure (Adv. Mater. 6/2019). Advanced Materials, 2019, 31, 1970041.	11.1	18
29	Effect of laser illumination on the morphology and optical property of few-layer MoS ₂ nanosheet in NMP and PMMA. Journal of Materials Chemistry C, 2016, 4, 678-683.	2.7	17
30	Tunable Polarity Behavior and High-Performance Photosensitive Characteristics in Schottky-Barrier Field-Effect Transistors Based on Multilayer WS ₂ . ACS Applied Materials & Interfaces, 2018, 10, 2745-2751.	4.0	17
31	Expanding the toolbox of photon upconversion for emerging frontier applications. Materials Horizons, 2022, 9, 1167-1195.	6.4	17
32	Constructing Interfacial Energy Transfer for Photon Up―and Downâ€Conversion from Lanthanides in a Core–Shell Nanostructure. Angewandte Chemie, 2016, 128, 12544-12548.	1.6	15
33	Synthesis of Submillimeterâ€6cale Single Crystal Stannous Sulfide Nanoplates for Visible and Nearâ€Infrared Photodetectors with Ultrahigh Responsivity. Advanced Electronic Materials, 2018, 4, 1800154.	2.6	15
34	Intense Near-UV Upconversion Luminescence in \${m Tm}^{3+}/{m Yb}^{3+}\$ Co-Doped Low-Phonon-Energy Lithium Gallogermanate Oxide Glass. IEEE Photonics Technology Letters, 2012, 24, 1726-1729.	1.3	12
35	Enhanced Raman scattering on two-dimensional palladium diselenide. Nanoscale, 2022, 14, 4181-4187.	2.8	12
36	Superbroadband NIR Photoluminescence in \${m Nd}^{3+}/{m Tm}^{3+}/{m Er}^{3+}\$ Codoped Fluorotellurite Glasses. IEEE Photonics Technology Letters, 2012, 24, 924-926.	1.3	11

Lili Tao

#	Article	IF	CITATIONS
37	High-power passively mode-locked Nd:YVO_4 laser using SWCNT saturable absorber fabricated by dip coating method. Optics Express, 2015, 23, 4880.	1.7	10
38	High-quality two-dimensional tellurium flakes grown by high-temperature vapor deposition. Journal of Materials Chemistry C, 2021, 9, 14394-14400.	2.7	10
39	Ultrafast pulse generation based on the 2D analogue of black phosphorus—GeS. OSA Continuum, 2020, 3, 658.	1.8	7
40	Two-dimensional palladium ditelluride: A novel saturable absorption material for ultrafast fiber lasers. Infrared Physics and Technology, 2021, 119, 103962.	1.3	7
41	Colloidally synthesized MoSe2 nano-flowers anchored on three-dimensional porous reduced graphene oxide thin films as advanced counter electrode for dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2017, 28, 15418-15422.	1.1	6
42	<i>Q</i> -switched ytterbium fiber laser based on rhenium diselenide as a saturable absorber. Journal Physics D: Applied Physics, 2019, 52, 465101.	1.3	6
43	Nonlayered In ₂ S ₃ /Al ₂ O ₃ /CsPbBr ₃ Quantum Dot Heterojunctions for Sensitive and Stable Photodetectors. ACS Applied Nano Materials, 2021, 4, 5106-5114.	2.4	6
44	Upconversion Luminescence of Tm3+/Yb3+ Codoped Oxyfluoride Glass Ceramics Containing Ba2YbF7 Nanocrystals. Integrated Ferroelectrics, 2013, 142, 31-36.	0.3	5
45	Preparation of ultrathin ReS2 nanosheets and their application to Q-switched Er-doped fiber lasers. Frontiers of Information Technology and Electronic Engineering, 2021, 22, 296-302.	1.5	5
46	Controlling Upconversion: Enabling Photon Upconversion and Precise Control of Donor–Acceptor Interaction through Interfacial Energy Transfer (Adv. Sci. 3/2018). Advanced Science, 2018, 5, 1870016.	5.6	4
47	Innenrücktitelbild: Constructing Interfacial Energy Transfer for Photon Up―and Downâ€Conversion from Lanthanides in a Core–Shell Nanostructure (Angew. Chem. 40/2016). Angewandte Chemie, 2016, 128, 12731-12731.	1.6	0
48	Passively mode-locked in Er-doped fiber laser based on semi-metallic InBi saturable absorber. Journal Physics D: Applied Physics, 0, , .	1.3	0