Alex B Guenther

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/614390/publications.pdf

Version: 2024-02-01

390 papers 47,167 citations

²⁵³⁸ 96 h-index

189 g-index

543 all docs

543 docs citations

543 times ranked

17151 citing authors

#	Article	IF	CITATIONS
1	Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and) Tj ETQq $1\ 1\ 0$.	784314 r _i	gBT,/Overlock
2	A global model of natural volatile organic compound emissions. Journal of Geophysical Research, 1995, 100, 8873.	3.3	3,610
3	The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 2012, 5, 1471-1492.	1.3	2,535
4	Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geoscientific Model Development, 2010, 3, 43-67.	1.3	1,590
5	Isoprene and monoterpene emission rate variability: Model evaluations and sensitivity analyses. Journal of Geophysical Research, 1993, 98, 12609-12617.	3. 3	1,432
6	Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry. Global Biogeochemical Cycles, 1992, 6, 389-430.	1.9	788
7	Sulfur emissions to the atmosphere from natural sourees. Journal of Atmospheric Chemistry, 1992, 14, 315-337.	1.4	723
8	Atmospheric composition change – global and regional air quality. Atmospheric Environment, 2009, 43, 5268-5350.	1.9	714
9	Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years. Atmospheric Chemistry and Physics, 2014, 14, 9317-9341.	1.9	648
10	Natural emissions of non-methane volatile organic compounds, carbon monoxide, and oxides of nitrogen from North America. Atmospheric Environment, 2000, 34, 2205-2230.	1.9	591
11	Recent advances in understanding secondary organic aerosol: Implications for global climate forcing. Reviews of Geophysics, 2017, 55, 509-559.	9.0	548
12	Biogenic Hydrocarbons in the Atmospheric Boundary Layer: A Review. Bulletin of the American Meteorological Society, 2000, 81, 1537-1575.	1.7	532
13	Isoprene and monoterpene emission rate variability: Observations with eucalyptus and emission rate algorithm development. Journal of Geophysical Research, 1991, 96, 10799-10808.	3.3	496
14	Improving our fundamental understanding of the role of aerosolâ´'cloud interactions in the climate system. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5781-5790.	3.3	479
15	Natural volatile organic compound emission rate estimates for U.S. woodland landscapes. Atmospheric Environment, 1994, 28, 1197-1210.	1.9	477
16	Inventorying emissions from nature in Europe. Journal of Geophysical Research, 1999, 104, 8113-8152.	3.3	452
17	Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change. Atmospheric Chemistry and Physics, 2006, 6, 2017-2038.	1.9	447
18	A national inventory of biogenic hydrocarbon emissions. Atmospheric Environment, 1987, 21, 1695-1705.	1.1	361

#	Article	IF	Citations
19	Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7123-7128.	3.3	337
20	Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land use change. Journal of Geophysical Research, 2008, 113, .	3.3	335
21	Biogenic emissions in Europe: 1. Estimates and uncertainties. Journal of Geophysical Research, 1995, 100, 22875.	3.3	329
22	SEASONAL AND SPATIAL VARIATIONS IN NATURAL VOLATILE ORGANIC COMPOUND EMISSIONS. , 1997, 7, 34-45.		306
23	A review of the anthropogenic influence on biogenic secondary organic aerosol. Atmospheric Chemistry and Physics, 2011, 11, 321-343.	1.9	297
24	Sources and properties of Amazonian aerosol particles. Reviews of Geophysics, 2010, 48, .	9.0	283
25	Global atmospheric budget of acetaldehyde: 3-D model analysis and constraints from in-situ and satellite observations. Atmospheric Chemistry and Physics, 2010, 10, 3405-3425.	1.9	278
26	A review and synthesis of monoterpene speciation from forests in the United States. Atmospheric Environment, 2000, 34, 1761-1781.	1.9	266
27	Global budget of methanol: Constraints from atmospheric observations. Journal of Geophysical Research, 2005, 110, .	3.3	263
28	An improved model for estimating emissions of volatile organic compounds from forests in the eastern United States. Journal of Geophysical Research, 1994, 99, 12773.	3.3	256
29	Global isoprene emissions estimated using MEGAN, ECMWF analyses and a detailed canopy environment model. Atmospheric Chemistry and Physics, 2008, 8, 1329-1341.	1.9	249
30	Quantifying the seasonal and interannual variability of North American isoprene emissions using satellite observations of the formaldehyde column. Journal of Geophysical Research, 2006, 111, .	3.3	240
31	Sesquiterpene emissions from vegetation: a review. Biogeosciences, 2008, 5, 761-777.	1.3	240
32	Influence of increased isoprene emissions on regional ozone modeling. Journal of Geophysical Research, 1998, 103, 25611-25629.	3.3	234
33	Spatial distribution of isoprene emissions from North America derived from formaldehyde column measurements by the OMI satellite sensor. Journal of Geophysical Research, 2008, 113, .	3.3	234
34	Environmental and developmental controls over the seasonal pattern of isoprene emission from aspen leaves. Oecologia, 1994, 99, 260-270.	0.9	230
35	Exchange processes of volatile organic compounds above a tropical rain forest: Implications for modeling tropospheric chemistry above dense vegetation. Journal of Geophysical Research, 2004, 109, .	3.3	223
36	The tropical forest and fire emissions experiment: laboratory fire measurements and synthesis of campaign data. Atmospheric Chemistry and Physics, 2008, 8, 3509-3527.	1.9	221

3

#	Article	IF	Citations
37	Efficient Atmospheric Cleansing of Oxidized Organic Trace Gases by Vegetation. Science, 2010, 330, 816-819.	6.0	213
38	Introduction: Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5). Atmospheric Chemistry and Physics, 2016, 16, 4785-4797.	1.9	213
39	The Tropical Forest and Fire Emissions Experiment: overview and airborne fire emission factor measurements. Atmospheric Chemistry and Physics, 2007, 7, 5175-5196.	1.9	212
40	Isoprene emission estimates and uncertainties for the central African EXPRESSO study domain. Journal of Geophysical Research, 1999, 104, 30625-30639.	3.3	207
41	The tropical forest and fire emissions experiment: Emission, chemistry, and transport of biogenic volatile organic compounds in the lower atmosphere over Amazonia. Journal of Geophysical Research, 2007, 112, .	3.3	206
42	Evaluating the performance of pyrogenic and biogenic emission inventories against one decade of space-based formaldehyde columns. Atmospheric Chemistry and Physics, 2009, 9, 1037-1060.	1.9	198
43	Emission of 2-methyl-3-buten-2-ol by pines: A potentially large natural source of reactive carbon to the atmosphere. Journal of Geophysical Research, 1998, 103, 25479-25486.	3.3	194
44	An inventory of nitric oxide emissions from soils in the United States. Journal of Geophysical Research, 1992, 97, 7511-7519.	3.3	191
45	Atmospheric methanol budget and ocean implication. Global Biogeochemical Cycles, 2002, 16, 80-1-80-13.	1.9	191
46	The Tropical Forest and Fire Emissions Experiment: method evaluation of volatile organic compound emissions measured by PTR-MS, FTIR, and GC from tropical biomass burning. Atmospheric Chemistry and Physics, 2007, 7, 5883-5897.	1.9	186
47	Virtual disjunct eddy covariance measurements of organic compound fluxes from a subalpine forest using proton transfer reaction mass spectrometry. Atmospheric Chemistry and Physics, 2002, 2, 279-291.	1.9	184
48	Monoterpene and Sesquiterpene Emission Estimates for the United States. Environmental Science & Emps; Technology, 2008, 42, 1623-1629.	4.6	182
49	Effects of light, temperature and canopy position on net photosynthesis and isoprene emission from sweetgum (Liquidambar styraciflua) leaves. Tree Physiology, 1996, 16, 25-32.	1.4	179
50	Global terrestrial isoprene emission models: sensitivity to variability in climate and vegetation. Atmospheric Chemistry and Physics, 2011, 11, 8037-8052.	1.9	178
51	A Preliminary Synthesis of Modeled Climate Change Impacts on U.S. Regional Ozone Concentrations. Bulletin of the American Meteorological Society, 2009, 90, 1843-1864.	1.7	175
52	Plant Production and Emission of Volatile Organic Compounds. BioScience, 1997, 47, 373-383.	2.2	173
53	The contribution of reactive carbon emissions from vegetation to the carbon balance of terrestrial ecosystems. Chemosphere, 2002, 49, 837-844.	4.2	171
54	Mass spectral characterization of submicron biogenic organic particles in the Amazon Basin. Geophysical Research Letters, 2009, 36, .	1.5	171

#	Article	IF	CITATIONS
55	An overview of the Amazonian Aerosol Characterization Experiment 2008 (AMAZE-08). Atmospheric Chemistry and Physics, 2010, 10, 11415-11438.	1.9	170
56	Ozone photochemical production in urban Shanghai, China: Analysis based on ground level observations. Journal of Geophysical Research, 2009, 114, .	3.3	167
57	Estimations of isoprenoid emission capacity from enclosure studies: measurements, data processing, quality and standardized measurement protocols. Biogeosciences, 2011, 8, 2209-2246.	1.3	166
58	Atmospheric volatile organic compounds (VOC) at a remote tropical forest site in central Amazonia. Atmospheric Environment, 2000, 34, 4063-4072.	1.9	164
59	Sesquiterpene Emissions from Pine Trees â^' Identifications, Emission Rates and Flux Estimates for the Contiguous United States. Environmental Science & Environmental Science	4.6	159
60	Rapid cycling of reactive nitrogen in the marine boundary layer. Nature, 2016, 532, 489-491.	13.7	159
61	Response of isoprene emission to ambient CO ₂ changes and implications for global budgets. Global Change Biology, 2009, 15, 1127-1140.	4.2	158
62	Isoprene fluxes measured by enclosure, relaxed eddy accumulation, surface layer gradient, mixed layer gradient, and mixed layer mass balance techniques. Journal of Geophysical Research, 1996, 101, 18555-18567.	3.3	154
63	Contribution of isoprene to chemical budgets: A model tracer study with the NCAR CTM MOZARTâ€4. Journal of Geophysical Research, 2008, 113, .	3.3	154
64	Biogenic volatile organic compound emissions (BVOCs) I. Identifications from three continental sites in the U.S Chemosphere, 1999, 38, 2163-2187.	4.2	148
65	Seasonal variation of biogenic VOC emissions above a mixed hardwood forest in northern Michigan. Geophysical Research Letters, 2003, 30, n/a-n/a.	1.5	147
66	Global emissions of non-methane hydrocarbons deduced from SCIAMACHY formaldehyde columns through 2003–2006. Atmospheric Chemistry and Physics, 2009, 9, 3663-3679.	1.9	144
67	Assessment of volatile organic compound emissions from ecosystems of China. Journal of Geophysical Research, 2002, 107, ACH 16-1-ACH 16-21.	3.3	142
68	Emissions and ambient distributions of Biogenic Volatile Organic Compounds (BVOC) in a ponderosa pine ecosystem: interpretation of PTR-MS mass spectra. Atmospheric Chemistry and Physics, 2010, 10, 1759-1771.	1.9	140
69	A new European plant-specific emission inventory of biogenic volatile organic compounds for use in atmospheric transport models. Biogeosciences, 2009, 6, 1059-1087.	1.3	138
70	Rapid formation of isoprene photo-oxidation products observed in Amazonia. Atmospheric Chemistry and Physics, 2009, 9, 7753-7767.	1.9	136
71	Seasonal temperature variations influence isoprene emission. Geophysical Research Letters, 2001, 28, 1707-1710.	1.5	135
72	Megacity impacts on regional ozone formation: observations and WRF-Chem modeling for the MIRAGE-Shanghai field campaign. Atmospheric Chemistry and Physics, 2013, 13, 5655-5669.	1.9	132

#	Article	IF	CITATIONS
73	Estimates of regional natural volatile organic compound fluxes from enclosure and ambient measurements. Journal of Geophysical Research, 1996, 101, 1345-1359.	3.3	131
74	Urban pollution greatly enhances formation of natural aerosols over the Amazon rainforest. Nature Communications, 2019, 10, 1046.	5.8	131
75	Effect of drought on isoprene emission rates from leaves of Quercus virginiana Mill Atmospheric Environment, 2004, 38, 6149-6156.	1.9	130
76	Overview: oxidant and particle photochemical processes above a south-east Asian tropical rainforest (the OP3 project): introduction, rationale, location characteristics and tools. Atmospheric Chemistry and Physics, 2010, 10, 169-199.	1.9	130
77	Sesquiterpene emissions from loblolly pine and their potential contribution to biogenic aerosol formation in the Southeastern US. Atmospheric Environment, 2006, 40, 4150-4157.	1.9	128
78	Organosulfates as Tracers for Secondary Organic Aerosol (SOA) Formation from 2-Methyl-3-Buten-2-ol (MBO) in the Atmosphere. Environmental Science & Environmental Science & 2012, 46, 9437-9446.	4.6	128
79	The Green Ocean Amazon Experiment (GoAmazon2014/5) Observes Pollution Affecting Gases, Aerosols, Clouds, and Rainfall over the Rain Forest. Bulletin of the American Meteorological Society, 2017, 98, 981-997.	1.7	128
80	Seasonal and interannual variability of North American isoprene emissions as determined by formaldehyde column measurements from space. Geophysical Research Letters, 2003, 30, n/a-n/a.	1.5	125
81	Methane emissions from upland forest soils and vegetation. Tree Physiology, 2008, 28, 491-498.	1.4	125
82	Temporal variability in basal isoprene emission factor. Tree Physiology, 2000, 20, 799-805.	1.4	123
83	Eddy covariance measurement of isoprene fluxes. Journal of Geophysical Research, 1998, 103, 13145-13152.	3.3	122
84	First space-based derivation of the global atmospheric methanol emission fluxes. Atmospheric Chemistry and Physics, 2011, 11, 4873-4898.	1.9	122
85	Atmospheric amines and ammonia measured with a chemical ionization mass spectrometer (CIMS). Atmospheric Chemistry and Physics, 2014, 14, 12181-12194.	1.9	121
86	Eddy covariance measurements of oxygenated volatile organic compound fluxes from crop harvesting using a redesigned proton-transfer-reaction mass spectrometer. Journal of Geophysical Research, 2001, 106, 24157-24167.	3.3	119
87	Carbon trace gas fluxes along a successional gradient in the Hudson Bay lowland. Journal of Geophysical Research, 1994, 99, 1469.	3.3	118
88	Light dependency of VOC emissions from selected Mediterranean plant species. Atmospheric Environment, 2002, 36, 3147-3159.	1.9	118
89	Development of Atmospheric Tracer Methods To Measure Methane Emissions from Natural Gas Facilities and Urban Areas. Environmental Science & Emp; Technology, 1995, 29, 1468-1479.	4.6	117
90	Environmental controls over isoprene emission in deciduous oak canopies. Tree Physiology, 1997, 17, 705-714.	1.4	117

#	Article	IF	CITATIONS
91	Role of canopy-scale photochemistry in modifying biogenic-atmosphere exchange of reactive terpene species: Results from the CELTIC field study. Journal of Geophysical Research, 2005, 110, .	3.3	117
92	Towards a quantitative understanding of total OH reactivity: A review. Atmospheric Environment, 2016, 134, 147-161.	1.9	117
93	Model sensitivity evaluation for organic carbon using two multi-pollutant air quality models that simulate regional haze in the southeastern United States. Atmospheric Environment, 2006, 40, 4960-4972.	1.9	116
94	Measurement of atmospheric sesquiterpenes by proton transfer reaction-mass spectrometry (PTR-MS). Atmospheric Measurement Techniques, 2009, 2, 99-112.	1,2	115
95	Isoprene emissions over Asia 1979–2012: impact of climate and land-use changes. Atmospheric Chemistry and Physics, 2014, 14, 4587-4605.	1.9	114
96	Tethered balloon measurements of biogenic VOCs in the atmospheric boundary layer. Atmospheric Environment, 1999, 33, 855-867.	1.9	111
97	Eddy covariance measurement of biogenic oxygenated VOC emissions from hay harvesting. Atmospheric Environment, 2001, 35, 491-495.	1.9	110
98	Future Changes in Biogenic Isoprene Emissions: How Might They Affect Regional and Global Atmospheric Chemistry?. Earth Interactions, 2006, 10, 1-19.	0.7	110
99	Impacts of weather conditions modified by urban expansion on surface ozone: Comparison between the Pearl River Delta and Yangtze River Delta regions. Advances in Atmospheric Sciences, 2009, 26, 962-972.	1.9	110
100	The bi-directional exchange of oxygenated VOCs between a loblolly pine (<l>Pinus) Tj ETQq0 0 0 3015-3031.</l>	rgBT /Ove 1.9	rlock 10 Tf 50 109
101	The Canopy Horizontal Array Turbulence Study. Bulletin of the American Meteorological Society, 2011, 92, 593-611.	1.7	109
102	Nine years of global hydrocarbon emissions based on source inversion of OMI formaldehyde observations. Atmospheric Chemistry and Physics, 2016, 16, 10133-10158.	1.9	109
103	Eddy covariance fluxes of peroxyacetyl nitrates (PANs) and NOyto a coniferous forest. Journal of Geophysical Research, 2006, 111 , .	3.3	107
104	An Eddy-Covariance System for the Measurement of Surface/Atmosphere Exchange Fluxes of Submicron Aerosol Chemical Species—First Application Above an Urban Area. Aerosol Science and Technology, 2008, 42, 636-657.	1.5	107
105	Simulating biogenic volatile organic compound emissions in the Community Climate System Model. Journal of Geophysical Research, 2003, 108, .	3.3	106
106	Biogenic methanol and its impacts on tropospheric oxidants. Geophysical Research Letters, 2003, 30, n/a-n/a.	1.5	104
107	Atmospheric benzenoid emissions from plants rival those from fossil fuels. Scientific Reports, 2015, 5, 12064.	1.6	104
108	Disjunct eddy covariance measurements of oxygenated volatile organic compounds fluxes from an alfalfa field before and after cutting. Journal of Geophysical Research, 2002, 107, ACH 6-1.	3. 3	103

#	Article	IF	Citations
109	Isoprene emission capacity for US tree species. Atmospheric Environment, 2001, 35, 3341-3352.	1.9	101
110	First direct measurements of formaldehyde flux via eddy covariance: implications for missing in-canopy formaldehyde sources. Atmospheric Chemistry and Physics, 2011, 11, 10565-10578.	1.9	101
111	Leaf, branch, stand and landscape scale measurements of volatile organic compound fluxes from U.S. woodlands. Tree Physiology, 1996, 16, 17-24.	1.4	99
112	Biogenic volatile organic compound emissions from a lowland tropical wet forest in Costa Rica. Atmospheric Environment, 2002, 36, 3793-3802.	1.9	99
113	Net ecosystem fluxes of isoprene over tropical South America inferred from Global Ozone Monitoring Experiment (GOME) observations of HCHO columns. Journal of Geophysical Research, 2008, 113, .	3.3	99
114	Effect of isoprene emissions from major forests on ozone formation in the city of Shanghai, China. Atmospheric Chemistry and Physics, 2011, 11, 10449-10459.	1.9	98
115	Variation in potential for isoprene emissions among Neotropical forest sites. Global Change Biology, 2004, 10, 630-650.	4.2	96
116	Measurement of biogenic sulfur emissions from soils and vegetation: Application of dynamic enclosure methods with Natusch filter and GC/FPD analysis. Journal of Atmospheric Chemistry, 1987, 5, 469-491.	1.4	95
117	A high-resolution emission inventory for eastern China in 2000 and three scenarios for 2020. Atmospheric Environment, 2005, 39, 5917-5933.	1.9	95
118	Biogenic hydrocarbon emissions from southern African savannas. Journal of Geophysical Research, 1996, 101, 25859-25865.	3.3	93
119	Disjunct eddy covariance technique for trace gas flux measurements. Geophysical Research Letters, 2001, 28, 3139-3142.	1.5	93
120	Chemical sensing of plant stress at the ecosystem scale. Biogeosciences, 2008, 5, 1287-1294.	1.3	93
121	Environmental controls over methanol emission from leaves. Biogeosciences, 2007, 4, 1083-1099.	1.3	90
122	Biogenic emission measurement and inventories determination of biogenic emissions in the eastern United States and Texas and comparison with biogenic emission inventories. Journal of Geophysical Research, 2010, 115 , .	3.3	89
123	Patterns in volatile organic compound emissions along a savanna-rainforest gradient in central Africa. Journal of Geophysical Research, 1998, 103, 1443-1454.	3.3	88
124	Submicron particle mass concentrations and sources in the Amazonian wet season (AMAZE-08). Atmospheric Chemistry and Physics, 2015, 15, 3687-3701.	1.9	88
125	Volatile organic compounds from vegetation in southern Yunnan Province, China: Emission rates and some potential regional implications. Atmospheric Environment, 2006, 40, 1759-1773.	1.9	87
126	Approaches for quantifying reactive and low-volatility biogenic organic compound emissions by vegetation enclosure techniques – Part B: Applications. Chemosphere, 2008, 72, 365-380.	4.2	86

#	Article	IF	CITATIONS
127	SOSA – a new model to simulate the concentrations of organic vapours and sulphuric acid inside the ABL – Part 1: Model description and initial evaluation. Atmospheric Chemistry and Physics, 2011, 11, 43-51.	1.9	86
128	Dry Deposition of Ozone Over Land: Processes, Measurement, and Modeling. Reviews of Geophysics, 2020, 58, e2019RG000670.	9.0	86
129	Isoprene photochemistry over the Amazon rainforest. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6125-6130.	3.3	85
130	Topâ€down isoprene emissions over tropical South America inferred from SCIAMACHY and OMI formaldehyde columns. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6849-6868.	1.2	84
131	New particle formation in the Front Range of the Colorado Rocky Mountains. Atmospheric Chemistry and Physics, 2008, 8, 1577-1590.	1.9	83
132	Contribution of leaf and needle litter to whole ecosystem BVOC fluxes. Atmospheric Environment, 2012, 59, 302-311.	1.9	83
133	Comparison of different real time VOC measurement techniques in a ponderosa pine forest. Atmospheric Chemistry and Physics, 2013, 13, 2893-2906.	1.9	83
134	A biogenic volatile organic compound emission inventory for Hong Kong. Atmospheric Environment, 2009, 43, 6442-6448.	1.9	82
135	Attribution of projected changes in summertime US ozone and PM _{2.5} concentrations to global changes. Atmospheric Chemistry and Physics, 2009, 9, 1111-1124.	1.9	82
136	Isoprene suppression of new particle formation in a mixed deciduous forest. Atmospheric Chemistry and Physics, 2011, 11, 6013-6027.	1.9	82
137	Photosynthesis-dependent isoprene emission from leaf to planet in a global carbon-chemistry-climate model. Atmospheric Chemistry and Physics, 2013, 13, 10243-10269.	1.9	82
138	Volatility and lifetime against OH heterogeneous reaction of ambient isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA). Atmospheric Chemistry and Physics, 2016, 16, 11563-11580.	1.9	82
139	Canopy fluxes of 2-methyl-3-buten-2-ol over a ponderosa pine forest by relaxed eddy accumulation: Field data and model comparison. Journal of Geophysical Research, 1999, 104, 26107-26114.	3.3	81
140	Cloud Activating Properties of Aerosol Observed during CELTIC. Journals of the Atmospheric Sciences, 2007, 64, 441-459.	0.6	81
141	Contributions of primary and secondary biogenic VOC tototal OH reactivity during the CABINEX (Community Atmosphere-Biosphere INteractions Experiments)-09 field campaign. Atmospheric Chemistry and Physics, 2011, 11, 8613-8623.	1.9	80
142	In-canopy gas-phase chemistry during CABINEX 2009: sensitivity of a 1-D canopy model to vertical mixing and isoprene chemistry. Atmospheric Chemistry and Physics, 2012, 12, 8829-8849.	1.9	78
143	Impacts of seasonal and regional variability in biogenic VOC emissions on surface ozone in the Pearl River delta region, China. Atmospheric Chemistry and Physics, 2013, 13, 11803-11817.	1.9	78
144	How consistent are top-down hydrocarbon emissions based on formaldehyde observations from GOME-2 and OMI?. Atmospheric Chemistry and Physics, 2015, 15, 11861-11884.	1.9	77

#	Article	IF	Citations
145	Modelling changes in VOC emission in response to climate change in the continental United States. Global Change Biology, 1999, 5, 791-806.	4.2	76
146	Ecosystemâ€scale volatile organic compound fluxes duringÂan extreme drought in a broadleaf temperate forestÂof the Missouri Ozarks (central <scp>USA</scp>). Global Change Biology, 2015, 21, 3657-3674.	4.2	76
147	Effects of Anthropogenic and Biogenic Volatile Organic Compounds on Los Angeles Air Quality. Environmental Science & Environmental Science & Environme	4.6	76
148	Measurement and analysis of atmospheric concentrations of isoprene and its reaction products in central Texas. Atmospheric Environment, 2001, 35, 1001-1013.	1.9	75
149	Biogenic VOC emissions from forested Amazonian landscapes. Global Change Biology, 2004, 10, 651-662.	4.2	75
150	The impacts of reactive terpene emissions from plants on air quality in Las Vegas, Nevada. Atmospheric Environment, 2009, 43, 4109-4123.	1.9	75
151	Observation of isoprene hydroxynitrates in the southeastern United States and implications for the fate of NO& t;sub>& t; >x& t; i>& t; sub>. Atmospheric Chemistry and Physics, 2015, 15, 11257-11272.	1.9	75
152	Volatile organic emissions from the distillation and pyrolysis of vegetation. Atmospheric Chemistry and Physics, 2006, 6, 81-91.	1.9	74
153	Biogenic volatile organic compound emissions from desert vegetation of the southwestern US. Atmospheric Environment, 2006, 40, 1645-1660.	1.9	73
154	Volatile organic compound emissions from & https://www.gt;Larreatridentata.comp;lt;/i& https://www.gt; (creosotebush). Atmospheric Chemistry and Physics, 2010, 10, 12191-12206.	1.9	73
155	BVOC-aerosol-climate interactions in the global aerosol-climate model ECHAM5.5-HAM2. Atmospheric Chemistry and Physics, 2012, 12, 10077-10096.	1.9	73
156	Molecular composition of organic aerosols in central Amazonia: an ultra-high-resolution mass spectrometry study. Atmospheric Chemistry and Physics, 2016, 16, 11899-11913.	1.9	73
157	Flux estimates and OH reaction potential of reactive biogenic volatile organic compounds (BVOCs) from a mixed northern hardwood forest. Atmospheric Environment, 2007, 41, 5479-5495.	1.9	72
158	Emissions of putative isoprene oxidation products from mango branches under abiotic stress. Journal of Experimental Botany, 2013, 64, 3669-3679.	2.4	72
159	Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry. Atmospheric Chemistry and Physics, 2012, 12, 9529-9543.	1.9	71
160	Volatile organic compounds and isoprene oxidation products at a temperate deciduous forest site. Journal of Geophysical Research, 1998, 103, 22397-22414.	3.3	69
161	Modelling atmospheric OH-reactivity in a boreal forest ecosystem. Atmospheric Chemistry and Physics, 2011, 11, 9709-9719.	1.9	69
162	Secondary Organic Aerosol from Sesquiterpene and Monoterpene Emissions in the United States. Environmental Science & Environme	4.6	67

#	Article	IF	Citations
163	Biogenic volatile organic compound emissions (BVOCs) II. Landscape flux potentials from three continental sites in the U.S Chemosphere, 1999, 38, 2189-2204.	4.2	66
164	Evaluating the calculated dry deposition velocities of reactive nitrogen oxides and ozone from two community models over a temperate deciduous forest. Atmospheric Environment, 2011, 45, 2663-2674.	1.9	66
165	The primary and recycling sources of OH during the NACHTTâ€2011 campaign: HONO as an important OH primary source in the wintertime. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6886-6896.	1.2	66
166	Comprehensive characterization of atmospheric organic carbon at a forested site. Nature Geoscience, 2017, 10, 748-753.	5.4	66
167	Impacts of biogenic and anthropogenic emissions on summertime ozone formation in the Guanzhong Basin, China. Atmospheric Chemistry and Physics, 2018, 18, 7489-7507.	1.9	66
168	Biogenic isoprene emission: Model evaluation in a southeastern United States bottomland deciduous forest. Journal of Geophysical Research, 1997, 102, 18889-18901.	3.3	65
169	Canopy Level Fluxes of 2-Methyl-3-buten-2-ol, Acetone, and Methanol by a Portable Relaxed Eddy Accumulation System. Environmental Science & Eddy 2001, 35, 1701-1708.	4.6	65
170	Direct measurement of particle formation and growth from the oxidation of biogenic emissions. Atmospheric Chemistry and Physics, 2006, 6, 4403-4413.	1.9	65
171	Biogenic emissions of isoprenoids and NO in China and comparison to anthropogenic emissions. Science of the Total Environment, 2006, 371, 238-251.	3.9	65
172	Air quality diagnosis from comprehensive observations of total OH reactivity and reactive trace species in urban central Tokyo. Atmospheric Environment, 2012, 49, 51-59.	1.9	65
173	Global Organic Emissions from Vegetation. Advances in Global Change Research, 2004, , 115-170.	1.6	65
174	Biogenic hydrocarbon emissions and landcover/climate change in a subtropical savanna. Physics and Chemistry of the Earth, 1999, 24, 659-667.	0.3	64
175	Global emissions of terpenoid VOCs from terrestrial vegetation in the last millennium. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6867-6885.	1.2	64
176	Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia. Atmospheric Chemistry and Physics, 2018, 18, 467-493.	1.9	63
177	Ozarks Isoprene Experiment (OZIE): Measurements and modeling of the "isoprene volcano― Journal of Geophysical Research, 2005, 110, .	3.3	62
178	Evaluation of HO _x sources and cycling using measurement-constrained model calculations in a 2-methyl-3-butene-2-ol (MBO) and monoterpene (MT) dominated ecosystem. Atmospheric Chemistry and Physics, 2013, 13, 2031-2044.	1.9	62
179	Overview of the Manitou Experimental Forest Observatory: site description and selected science results from 2008 to 2013. Atmospheric Chemistry and Physics, 2014, 14, 6345-6367.	1.9	62
180	Synthesis of the Southeast Atmosphere Studies: Investigating Fundamental Atmospheric Chemistry Questions. Bulletin of the American Meteorological Society, 2018, 99, 547-567.	1.7	62

#	Article	IF	CITATIONS
181	Isoprene emission response to drought and the impact on global atmospheric chemistry. Atmospheric Environment, 2018, 183, 69-83.	1.9	62
182	Active Turbulence and Scalar Transport near the Forest–Atmosphere Interface. Journal of Applied Meteorology and Climatology, 1998, 37, 1533-1546.	1.7	61
183	Observed and modeled ecosystem isoprene fluxes from an oak-dominated temperate forest and the influence of drought stress. Atmospheric Environment, 2014, 84, 314-322.	1.9	61
184	Experiment for Regional Sources and Sinks of Oxidants (EXPRESSO): An overview. Journal of Geophysical Research, 1999, 104, 30609-30624.	3.3	60
185	Ground-level ozone influenced by circadian control of isoprene emissions. Nature Geoscience, 2011, 4, 671-674.	5.4	59
186	Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease. Biogeosciences, 2014, 11, 1461-1478.	1.3	59
187	Regulated largeâ€scale annual shutdown of Amazonian isoprene emissions?. Geophysical Research Letters, 2009, 36, .	1.5	58
188	Large estragole fluxes from oil palms in Borneo. Atmospheric Chemistry and Physics, 2010, 10, 4343-4358.	1.9	58
189	Dimethyl sulfide in the Amazon rain forest. Global Biogeochemical Cycles, 2015, 29, 19-32.	1.9	58
190	Evaluation of forest canopy models for estimating isoprene emissions. Journal of Geophysical Research, 1996, 101, 22787-22797.	3.3	57
191	Model evidence for a significant source of secondary organic aerosol from isoprene. Atmospheric Environment, 2007, 41, 1267-1274.	1.9	57
192	Biological and Chemical Diversity of Biogenic Volatile Organic Emissions into the Atmosphere. ISRN Atmospheric Sciences, 2013, 2013, 1-27.	0.4	57
193	Overview of the field measurement campaign in HyytiÃÞĀÞAugust 2001 in the framework of the EU project OSOA. Atmospheric Chemistry and Physics, 2004, 4, 657-678.	1.9	56
194	The effects of global changes upon regional ozone pollution in the United States. Atmospheric Chemistry and Physics, 2009, 9, 1125-1141.	1.9	56
195	Spatiotemporal variability of biogenic terpenoid emissions in Pearl River Delta, China, with high-resolution land-cover and meteorological data. Tellus, Series B: Chemical and Physical Meteorology, 2011, 63, 241-254.	0.8	56
196	Missing peroxy radical sources within a summertime ponderosa pine forest. Atmospheric Chemistry and Physics, 2014, 14, 4715-4732.	1.9	56
197	Airborne flux measurements of methane and volatile organic compounds over the Haynesville and Marcellus shale gas production regions. Journal of Geophysical Research D: Atmospheres, 2015, 120, 6271-6289.	1.2	56
198	Seasonal and spatial variations in biogenic hydrocarbon emissions from southern African savannas and woodlands. Atmospheric Environment, 2002, 36, 4265-4275.	1.9	55

#	Article	IF	Citations
199	Observational constraints on the global atmospheric budget of ethanol. Atmospheric Chemistry and Physics, 2010, 10, 5361-5370.	1.9	54
200	Testing Atmospheric Oxidation in an Alabama Forest. Journals of the Atmospheric Sciences, 2016, 73, 4699-4710.	0.6	54
201	Spatial and temporal variations in biogenic volatile organic compound emissions for Africa south of the equator. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	53
202	Quantifying sources and sinks of reactive gases in the lower atmosphere using airborne flux observations. Geophysical Research Letters, 2015, 42, 8231-8240.	1.5	53
203	Airborne observations reveal elevational gradient in tropical forest isoprene emissions. Nature Communications, 2017, 8, 15541.	5.8	53
204	Biogenic volatile organic compound emissions in central Africa during the Experiment for the Regional Sources and Sinks of Oxidants (EXPRESSO) biomass burning season. Journal of Geophysical Research, 1999, 104, 30659-30671.	3.3	52
205	Eddy flux and leaf-level measurements of biogenic VOC emissions from mopane woodland of Botswana. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	52
206	Wet and dry season ecosystem level fluxes of isoprene and monoterpenes from a southeast Asian secondary forest and rubber tree plantation. Atmospheric Environment, 2005, 39, 381-390.	1.9	52
207	Improved model of isoprene emissions in Africa using Ozone Monitoring Instrument (OMI) satellite observations of formaldehyde: implications for oxidants and particulate matter. Atmospheric Chemistry and Physics, 2014, 14, 7693-7703.	1.9	52
208	Seasonality of isoprenoid emissions from a primary rainforest inÂcentral Amazonia. Atmospheric Chemistry and Physics, 2016, 16, 3903-3925.	1.9	52
209	Variability-lifetime relationship of VOCs observed at the Sonnblick Observatory 1999â€"estimation of HO-densities. Atmospheric Environment, 2001, 35, 5287-5300.	1.9	49
210	Plant physiological and environmental controls over the exchange of acetaldehyde between forest canopies and the atmosphere. Biogeosciences, 2008, 5, 1559-1572.	1.3	49
211	Airborne Flux Measurements of BVOCs above Californian Oak Forests: Experimental Investigation of Surface and Entrainment Fluxes, OH Densities, and Damköhler Numbers. Journals of the Atmospheric Sciences, 2013, 70, 3277-3287.	0.6	49
212	Undisturbed and disturbed above canopy ponderosa pine emissions: PTR-TOF-MS measurements and MEGAN 2.1 model results. Atmospheric Chemistry and Physics, 2013, 13, 11935-11947.	1.9	49
213	Ambient aromatic hydrocarbon measurements at Welgegund, South Africa. Atmospheric Chemistry and Physics, 2014, 14, 7075-7089.	1.9	48
214	Tethered balloon measurements of biogenic volatile organic compounds at a Boreal forest site. Atmospheric Chemistry and Physics, 2004, 4, 215-229.	1.9	47
215	Can a "state of the art―chemistry transport model simulate Amazonian tropospheric chemistry?. Journal of Geophysical Research, 2011, 116, .	3.3	47
216	Future land use and land cover influences on regional biogenic emissions and air quality in the United States. Atmospheric Environment, 2009, 43, 5771-5780.	1.9	46

#	Article	IF	CITATIONS
217	Observations and models of emissions of volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: control by light, temperature and stomatal conductance. Oecologia, 2014, 176, 35-55.	0.9	46
218	Impact of isoprene and HONO chemistry on ozone and OVOC formation in a semirural South Korean forest. Atmospheric Chemistry and Physics, 2015, 15, 4357-4371.	1.9	46
219	Micrometeorological and leaf-level measurements of isoprene emissions from a southern African savanna. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	45
220	Observations of Diurnal to Weekly Variations of Monoterpene-Dominated Fluxes of Volatile Organic Compounds from Mediterranean Forests: Implications for Regional Modeling. Environmental Science & Environmental & Env	4.6	44
221	Current estimates of biogenic emissions from eucalypts uncertain for southeast Australia. Atmospheric Chemistry and Physics, 2016, 16, 6997-7011.	1.9	44
222	Terpene Composition Complexity Controls Secondary Organic Aerosol Yields from Scots Pine Volatile Emissions. Scientific Reports, 2018, 8, 3053.	1.6	44
223	An estimate of natural volatile organic compound emissions from vegetation since the last glacial maximum. Chemosphere, 2001, 3, 73-91.	1.2	43
224	Isoprene and monoterpene emissions from an Inner Mongolia grassland. Atmospheric Environment, 2006, 40, 5753-5758.	1.9	43
225	Seasonal trends of biogenic terpene emissions. Chemosphere, 2013, 93, 35-46.	4.2	43
226	Modeling Biogenic Volatile Organic Compound Emissions to the Atmosphere. , 1999, , 97-118.		42
227	Source characteristics of oxygenated volatile organic compounds and hydrogen cyanide. Journal of Geophysical Research, 2007, 112, .	3.3	42
228	Secondary Organic Aerosol Formation via 2-Methyl-3-buten-2-ol Photooxidation: Evidence of Acid-Catalyzed Reactive Uptake of Epoxides. Environmental Science and Technology Letters, 2014, 1, 242-247.	3.9	42
229	Airborne flux measurements of biogenic isoprene over California. Atmospheric Chemistry and Physics, 2014, 14, 10631-10647.	1.9	42
230	Direct retrieval of isoprene from satellite-based infrared measurements. Nature Communications, 2019, 10, 3811.	5.8	42
231	Methyl bromide deposition to soils. Atmospheric Environment, 1998, 32, 1581-1586.	1.9	41
232	A land use database and examples of biogenic isoprene emission estimates for the state of Texas, USA. Atmospheric Environment, 2001, 35, 6465-6477.	1.9	41
233	Improved land cover and emission factors for modeling biogenic volatile organic compounds emissions from Hong Kong. Atmospheric Environment, 2010, 44, 1456-1468.	1.9	41
234	New Particle Formation and Growth in an Isoprene-Dominated Ozark Forest: From Sub-5Ânm to CCN-Active Sizes. Aerosol Science and Technology, 2014, 48, 1285-1298.	1.5	41

#	Article	IF	CITATIONS
235	A true eddy accumulation system for trace gas fluxes using disjunct eddy sampling method. Journal of Geophysical Research, 2000, 105, 24791-24798.	3.3	40
236	Controls over ozone deposition to a high elevation subalpine forest. Agricultural and Forest Meteorology, 2009, 149, 1447-1459.	1.9	40
237	Total OH reactivity measurements in ambient air in a southern Rocky mountain ponderosa pine forest during BEACHON-SRM08 summer campaign. Atmospheric Environment, 2014, 85, 1-8.	1.9	40
238	Shifts in plant foliar and floral metabolomes in response to the suppression of the associated microbiota. BMC Plant Biology, 2016, 16, 78.	1.6	40
239	A sampler for atmospheric volatile organic compounds by copter unmanned aerial vehicles. Atmospheric Measurement Techniques, 2019, 12, 3123-3135.	1.2	40
240	EXPRESSO flux measurements at upland and lowland Congo tropical forest site. Tellus, Series B: Chemical and Physical Meteorology, 2001, 53, 220-234.	0.8	39
241	Seasonal and interannual variations in whole-ecosystem BVOC emissions from a subtropical plantation in China. Atmospheric Environment, 2017, 161, 176-190.	1.9	39
242	The significance of land-atmosphere interactions in the Earth systemâ€"iLEAPS achievements and perspectives. Anthropocene, 2015, 12, 69-84.	1.6	38
243	Photosynthesis, stomatal conductance and terpene emission response to water availability in dry and mesic Mediterranean forests. Trees - Structure and Function, 2016, 30, 749-759.	0.9	38
244	Regional to Global Biogenic Isoprene Emission Responses to Changes in Vegetation From 2000 to 2015. Journal of Geophysical Research D: Atmospheres, 2018, 123, 3757-3771.	1.2	38
245	Chamber-based insights into the factors controlling epoxydiol (IEPOX) secondary organic aerosol (SOA) yield, composition, and volatility. Atmospheric Chemistry and Physics, 2019, 19, 11253-11265.	1.9	38
246	Amazonian biogenic volatile organic compounds under global change. Global Change Biology, 2020, 26, 4722-4751.	4.2	38
247	Biogenic volatile organic compounds from an invasive species: impacts on plant–plant interactions. Plant Ecology, 2009, 203, 195-205.	0.7	37
248	Isoprene suppression of new particle formation: Potential mechanisms and implications. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14,621.	1.2	37
249	Dry nitrogen deposition estimates over a forest experiencing free air CO ₂ enrichment. Global Change Biology, 2008, 14, 768-781.	4.2	36
250	Contribution of flowering trees to urban atmospheric biogenic volatile organic compound emissions. Biogeosciences, 2012, 9, 3777-3785.	1.3	36
251	Southeast Atmosphere Studies: learning from model-observation syntheses. Atmospheric Chemistry and Physics, 2018, 18, 2615-2651.	1.9	36
252	A long-term estimation of biogenic volatile organic compound (BVOC) emission in China from 2001–2016: the roles of land cover change and climate variability. Atmospheric Chemistry and Physics, 2021, 21, 4825-4848.	1.9	36

#	Article	IF	CITATIONS
253	Relevance of ion-induced nucleation of sulfuric acid and water in the lower troposphere over the boreal forest at northern latitudes. Atmospheric Research, 2008, 90, 151-158.	1.8	35
254	Development and Assessment of a High-Resolution Biogenic Emission Inventory from Urban Green Spaces in China. Environmental Science & Environmental Sc	4.6	35
255	Sensitivity of biogenic volatile organic compounds to land surface parameterizations and vegetation distributions in California. Geoscientific Model Development, 2016, 9, 1959-1976.	1.3	34
256	Carbon isotope analysis of acetaldehyde emitted from leaves following mechanical stress and anoxia. Plant Biology, 2009, 11, 591-597.	1.8	33
257	Estimating urban vegetation cover fraction using Google Earth \hat{A}^{\otimes} images. Journal of Land Use Science, 2012, 7, 311-329.	1.0	33
258	Seasonal variations in terpene emission factors of dominant species in four ecosystems in NE Spain. Atmospheric Environment, 2013, 70, 149-158.	1.9	33
259	Monoterpene emissions from a Pacific Northwest Old-Growth Forest and impact on regional biogenic VOC emission estimates. Atmospheric Environment, 2004, 38, 3089-3098.	1.9	32
260	Gas-aerosol partitioning of semi volatile carbonyls in polluted atmosphere in Hachioji, Tokyo. Geophysical Research Letters, 2005, 32, .	1.5	32
261	Corrigendum to & mp;quot; Estimates of global terrestrial isoprene emissions using MEGAN (Model of) Tj ETQq1 1 2006. Atmospheric Chemistry and Physics, 2007, 7, 4327-4327.	. 0.78431 1.9	4 rgBT /Ove 32
262	Impact of biogenic volatile organic compounds on ozone production at the Taehwa Research Forest near Seoul, South Korea. Atmospheric Environment, 2013, 70, 447-453.	1.9	32
263	The use of disjunct eddy sampling methods for the determination of ecosystem level fluxes of trace gases. Atmospheric Chemistry and Physics, 2009, 9, 981-994.	1.9	31
264	Volatilizable Biogenic Organic Compounds (VBOCs) with two dimensional Gas Chromatography-Time of Flight Mass Spectrometry (GC & December 1988): samp;lt;/b& December 1988; Samp;lt;/b& December 1988; Sampling methods, VBOC complexity, and chromatographic retention data. Atmospheric Measurement Techniques, 2012, 5, 345-361.	1.2	31
265	Assessing sources of uncertainty in formaldehyde air mass factors over tropical South America: Implications for topâ€down isoprene emission estimates. Journal of Geophysical Research, 2012, 117, .	3.3	31
266	An evaluation of ozone dry deposition simulations in East Asia. Atmospheric Chemistry and Physics, 2014, 14, 7929-7940.	1.9	31
267	An ecosystem-scale perspective of the net land methanol flux: synthesis of micrometeorological flux measurements. Atmospheric Chemistry and Physics, 2015, 15, 7413-7427.	1.9	31
268	Contrasting organic aerosol particles from boreal and tropical forests during HUMPPA-COPEC-2010 and AMAZE-08 using coherent vibrational spectroscopy. Atmospheric Chemistry and Physics, 2011, 11, 10317-10329.	1.9	30
269	Comparing three vegetation monoterpene emission models to measured gas concentrations with a model of meteorology, air chemistry and chemical transport. Biogeosciences, 2014, 11, 5425-5443.	1.3	30
270	Chemistryâ€turbulence interactions and mesoscale variability influence the cleansing efficiency of the atmosphere. Geophysical Research Letters, 2015, 42, 10,894.	1.5	30

#	Article	IF	Citations
271	Seasonal and interannual variations in whole-ecosystem isoprene and monoterpene emissions from a temperate mixed forest in Northern China. Atmospheric Pollution Research, 2015, 6, 696-707.	1.8	30
272	Topsoil depth substantially influences the responses to drought of the foliar metabolomes of Mediterranean forests. Perspectives in Plant Ecology, Evolution and Systematics, 2016, 21, 41-54.	1.1	30
273	Measurements of biogenic volatile organic compounds at a grazed savannah grassland agricultural landscape in South Africa. Atmospheric Chemistry and Physics, 2016, 16, 15665-15688.	1.9	30
274	Ethene, propene, butene and isoprene emissions from a ponderosa pine forest measured by relaxed eddy accumulation. Atmospheric Chemistry and Physics, 2017, 17, 13417-13438.	1.9	30
275	Quantitative infrared absorption cross sections of isoprene for atmospheric measurements. Atmospheric Measurement Techniques, 2014, 7, 3839-3847.	1.2	29
276	BioEarth: Envisioning and developing a new regional earth system model to inform natural and agricultural resource management. Climatic Change, 2015, 129, 555-571.	1.7	29
277	Seasonal variations in whole-ecosystem BVOC emissions from a subtropical bamboo plantation in China. Atmospheric Environment, 2016, 124, 12-21.	1.9	28
278	Isoprene photo-oxidation products quantify the effect of pollution on hydroxyl radicals over Amazonia. Science Advances, 2018, 4, eaar2547.	4.7	28
279	Intermediate-scale horizontal isoprene concentrations in the near-canopy forest atmosphere and implications for emission heterogeneity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19318-19323.	3.3	28
280	Global and regional impacts of land cover changes on isoprene emissions derived from spaceborne data and the MEGAN model. Atmospheric Chemistry and Physics, 2021, 21, 8413-8436.	1.9	28
281	Physiological Reality in Relation to Ecosystem- and Global-Level Estimates of Isoprene Emission. , 1991, , 185-207.		27
282	Evaluation and improvements of two community models in simulating dry deposition velocities for peroxyacetyl nitrate (PAN) over a coniferous forest. Journal of Geophysical Research, 2012, 117, .	3.3	27
283	The effects of global change upon United States air quality. Atmospheric Chemistry and Physics, 2015, 15, 12645-12665.	1.9	27
284	Tropical and Boreal Forest – Atmosphere Interactions: A Review. Tellus, Series B: Chemical and Physical Meteorology, 2022, 74, 24.	0.8	27
285	Uncertainties of isoprene emissions in the MEGAN model estimated for a coniferous and broad-leaved mixed forest in Southern China. Atmospheric Environment, 2014, 98, 105-110.	1.9	26
286	Understanding isoprene photooxidation using observations and modeling over a subtropical forest in the southeastern US. Atmospheric Chemistry and Physics, 2016, 16, 7725-7741.	1.9	26
287	Emission of sunscreen salicylic esters from desert vegetation and their contribution to aerosol formation. Atmospheric Chemistry and Physics, 2008, 8, 7367-7371.	1.9	25
288	Natural volatile organic compound emissions from plants and their roles in oxidant balance and particle formation. Geophysical Monograph Series, 2009, , 183-206.	0.1	25

#	Article	IF	Citations
289	New Directions: GEIA's 2020 vision for better air emissions information. Atmospheric Environment, 2013, 81, 710-712.	1.9	25
290	Recent past (1979–2014) and future (2070–2099) isoprene fluxes over Europe simulated with the MEGAN–MOHYCAN model. Biogeosciences, 2018, 15, 3673-3690.	1.3	24
291	Impact of Shortâ€∓erm Climate Variability on Volatile Organic Compounds Emissions Assessed Using OMI Satellite Formaldehyde Observations. Geophysical Research Letters, 2018, 45, 8681-8689.	1.5	24
292	Integration of airborne and ground observations of nitryl chloride in the Seoul metropolitan area and the implications on regional oxidation capacity during KORUS-AQ 2016. Atmospheric Chemistry and Physics, 2019, 19, 12779-12795.	1.9	24
293	Marine Organic Halide and Isoprene Emissions Near Mace Head, Ireland. Environmental Chemistry, 2005, 2, 291.	0.7	23
294	What is the importance of climate model bias when projecting the impacts of climate change on land surface processes?. Biogeosciences, 2014, 11, 2601-2622.	1.3	22
295	Potential Role of Stabilized Criegee Radicals in Sulfuric Acid Production in a High Biogenic VOC Environment. Environmental Science & Environment. Environmental Science & Env	4.6	22
296	Intercomparison of OH and OH reactivity measurements in a high isoprene and low NO environment during the Southern Oxidant and Aerosol Study (SOAS). Atmospheric Environment, 2018, 174, 227-236.	1.9	22
297	Tropospheric HONO distribution and chemistry in the southeastern US. Atmospheric Chemistry and Physics, 2018, 18, 9107-9120.	1.9	22
298	Leaf phenology as one important driver of seasonal changes in isoprene emissions in central Amazonia. Biogeosciences, 2018, 15, 4019-4032.	1.3	22
299	Evaluating a New Deposition Velocity Module in the Noah Land-Surface Model. Boundary-Layer Meteorology, 2010, 137, 271-290.	1.2	21
300	PTR-TOF-MS eddy covariance measurements of isoprene and monoterpene fluxes from an eastern Amazonian rainforest. Atmospheric Chemistry and Physics, 2020, 20, 7179-7191.	1.9	21
301	EXPRESSO flux measurements at upland and lowland Congo tropical forest site. Tellus, Series B: Chemical and Physical Meteorology, 2022, 53, 220.	0.8	20
302	Are plant emissions green?. Nature, 2008, 452, 701-702.	13.7	20
303	Close and distant: Contrasting the metabolism of two closely related subspecies of Scots pine under the effects of folivory and summer drought. Ecology and Evolution, 2017, 7, 8976-8988.	0.8	20
304	Importance of wet precipitation as a removal and transport process for atmospheric water soluble carbonyls. Atmospheric Environment, 2007, 41, 790-796.	1.9	19
305	Emissions of BVOC from lodgepole pine in response to mountain pine beetle attack in high and low mortality forest stands. Biogeosciences, 2013, 10, 483-499.	1.3	19
306	SEASONAL AND SPATIAL VARIATIONS IN NATURAL VOLATILE ORGANIC COMPOUND EMISSIONS. , 1997, 7, 34.		19

#	Article	IF	CITATIONS
307	U.S. National Biogenic Sulfur Emissions Inventory. ACS Symposium Series, 1989, , 14-30.	0.5	18
308	Leaf level emission measurement of sesquiterpenes and oxygenated sesquiterpenes from desert shrubs and temperate forest trees using a liquid extraction technique. Geochemical Journal, 2009, 43, 179-189.	0.5	18
309	The Amazonian boundary layer and mesoscale circulations. Geophysical Monograph Series, 2009, , 163-181.	0.1	18
310	Evaluating the effects of climate change on summertime ozone using a relative response factor approach for policymakers. Journal of the Air and Waste Management Association, 2012, 62, 1061-1074.	0.9	18
311	Similar local, but different systemic, metabolomic responses of closely related pine subspecies to folivory by caterpillars of the processionary moth. Plant Biology, 2016, 18, 484-494.	1.8	18
312	Airborne measurements of isoprene and monoterpene emissions from southeastern U.S. forests. Science of the Total Environment, 2017, 595, 149-158.	3.9	18
313	Atmospheric variability of biogenic VOCs in the surface layer measured by proton-transfer-reaction mass spectrometry. International Journal of Mass Spectrometry, 2004, 239, 77-86.	0.7	17
314	Sensitivity of isoprene emissions to drought over south-eastern Australia: Integrating models and satellite observations of soil moisture. Atmospheric Environment, 2019, 209, 112-124.	1.9	17
315	Model of Emissions of Gases and Aerosol from Nature Version 3 (MEGAN3) for Estimating Biogenic Emissions. Springer Proceedings in Complexity, 2020, , 187-192.	0.2	17
316	Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease., 2013, 10, 3977-4023.		17
317	Building wake dispersion at an Arctic industrial site: Field tracer observations and plume model evaluations. Atmospheric Environment Part A General Topics, 1990, 24, 2329-2347.	1.3	16
318	A new paradigm of quantifying ecosystem stress through chemical signatures. Ecosphere, 2016, 7, e01559.	1.0	16
319	Evaluation of regional isoprene emission factors and modeled fluxes in California. Atmospheric Chemistry and Physics, 2016, 16, 9611-9628.	1.9	16
320	Large drought-induced variations in oak leaf volatile organic compound emissions during PINOT NOIR 2012. Chemosphere, 2016, 146, 8-21.	4.2	16
321	Drought impacts on photosynthesis, isoprene emission and atmospheric formaldehyde in a mid-latitude forest. Atmospheric Environment, 2017, 167, 190-201.	1.9	16
322	Relaxed Eddy Accumulation Simulations of Aerosol Number Fluxes and Potential Proxy Scalars. Boundary-Layer Meteorology, 2008, 129, 451-468.	1.2	15
323	Forest-atmosphere BVOC exchange in diverse and structurally complex canopies: 1-D modeling of a mid-successional forest in northern Michigan. Atmospheric Environment, 2015, 120, 217-226.	1.9	15
324	Contribution from biogenic organic compounds to particle growth during the 2010 BEACHON-ROCS campaign in a Colorado temperate needleleaf forest. Atmospheric Chemistry and Physics, 2015, 15, 8643-8656.	1.9	15

#	Article	IF	CITATIONS
325	Are the metabolomic responses to folivory of closely related plant species linked to macroevolutionary and plant–folivore coevolutionary processes?. Ecology and Evolution, 2016, 6, 4372-4386.	0.8	15
326	Springtime ecosystem-scale monoterpene fluxes from Mediterranean pine forests across a precipitation gradient. Agricultural and Forest Meteorology, 2017, 237-238, 150-159.	1.9	15
327	Contrasting Reactive Organic Carbon Observations in the Southeast United States (SOAS) and Southern California (CalNex). Environmental Science & Envir	4.6	15
328	Large methane releases lead to strong aerosol forcing and reduced cloudiness. Atmospheric Chemistry and Physics, 2011, 11, 6961-6969.	1.9	14
329	Evaluation of semi-static enclosure technique for rapid surveys of biogenic volatile organic compounds (BVOCs) emission measurements. Atmospheric Environment, 2019, 212, 1-5.	1.9	14
330	Insights Into the Dynamics of Forest Succession and Non-Methane Hydrocarbon Trace Gas Emissions. Journal of Biogeography, 1995, 22, 493.	1.4	13
331	Dysautonomia in prodromal αâ€synucleinopathy: peripheral versus central autonomic degeneration. European Journal of Neurology, 2016, 23, 878-890.	1.7	13
332	Simple, stable, and affordable: Towards long-term ecosystem scale flux measurements of VOCs. Atmospheric Environment, 2016, 131, 225-227.	1.9	13
333	Numerical model to quantify biogenic volatile organic compound emissions: The Pearl River Delta region as a case study. Journal of Environmental Sciences, 2016, 46, 72-82.	3.2	13
334	Quantitative and qualitative sensing techniques for biogenic volatile organic compounds and their oxidation products. Environmental Sciences: Processes and Impacts, 2013, 15, 1301.	1.7	12
335	Primary and secondary organics in the tropical Amazonian rainforest aerosols: chiral analysis of 2-methyltetraols. Environmental Sciences: Processes and Impacts, 2014, 16, 1413.	1.7	12
336	Constraining nucleation, condensation, and chemistry in oxidation flow reactors using size-distribution measurements and aerosol microphysical modeling. Atmospheric Chemistry and Physics, 2018, 18, 12433-12460.	1.9	12
337	Biomass burning emission disturbances of isoprene oxidation in a tropical forest. Atmospheric Chemistry and Physics, 2018, 18, 12715-12734.	1.9	12
338	Tight Coupling of Surface and In-Plant Biochemistry and Convection Governs Key Fine Particulate Components over the Amazon Rainforest. ACS Earth and Space Chemistry, 2022, 6, 380-390.	1.2	11
339	Sensitivity analysis of simulated SOA loadings using a varianceâ€based statistical approach. Journal of Advances in Modeling Earth Systems, 2016, 8, 499-519.	1.3	10
340	A MODIS Photochemical Reflectance Index (PRI) as an Estimator of Isoprene Emissions in a Temperate Deciduous Forest. Remote Sensing, 2018, 10, 557.	1.8	10
341	Isoprene Emissions Response to Drought and the Impacts on Ozone and SOA in China. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033263.	1.2	10
342	Air-chemistry & amp; quot; turbulence & amp; quot;: power-law scaling and statistical regularity. Atmospheric Chemistry and Physics, 2011, 11, 8395-8413.	1.9	9

#	Article	IF	Citations
343	Intensive measurements of gas, water, and energy exchange between vegetation and troposphere during the MONTES campaign in a vegetation gradient from short semi-desertic shrublands to tall wet temperate forests in the NW Mediterranean Basin. Atmospheric Environment, 2013, 75, 348-364.	1.9	9
344	Atmospheric dispersion in the arctic: Winter-time boundary-layer measurements. Boundary-Layer Meteorology, 1989, 49, 339-366.	1.2	8
345	Correction to "Seasonal variation of biogenic VOC emissions above a mixed hardwood forest in northern Michigan― Geophysical Research Letters, 2004, 31, .	1.5	8
346	River winds and pollutant recirculation near the Manaus city in the central Amazon. Communications Earth $\&$ Environment, 2021, 2, .	2.6	8
347	Oligomer and highly oxygenated organic molecule formation from oxidation of oxygenated monoterpenes emitted by California sage plants. Atmospheric Chemistry and Physics, 2020, 20, 10953-10965.	1.9	8
348	Synergistic effects of biogenic volatile organic compounds and soil nitric oxide emissions on summertime ozone formation in China. Science of the Total Environment, 2022, 828, 154218.	3.9	8
349	A tethered-balloon PTRMS sampling approach for surveying of landscape-scale biogenic VOC fluxes. Atmospheric Measurement Techniques, 2014, 7, 2263-2271.	1.2	7
350	Canopy level emissions of 2-methyl-3-buten-2-ol, monoterpenes, and sesquiterpenes from an experimental Pinus taeda plantation. Science of the Total Environment, 2016, 565, 730-741.	3.9	7
351	Atmo-ecometabolomics: a novel atmospheric particle chemical characterization methodology for ecological research. Environmental Monitoring and Assessment, 2019, 191, 78.	1.3	7
352	A novel Whole Air Sample Profiler (WASP) for the quantification of volatile organic compounds in the boundary layer. Atmospheric Measurement Techniques, 2013, 6, 2703-2712.	1.2	6
353	Biogenic isoprene emissions driven by regional weather predictions using different initialization methods: case studies during the SEAC ⁴ RS and DISCOVER-AQ airborne campaigns. Geoscientific Model Development, 2017, 10, 3085-3104.	1.3	6
354	Deciphering the Source of Primary Biological Aerosol Particles: A Pollen Case Study. ACS Earth and Space Chemistry, 2021, 5, 969-979.	1.2	6
355	Contributions to OH reactivity from unexplored volatile organic compounds measured by PTR-ToF-MS – a case study in a suburban forest of the Seoul metropolitan area during the Korea–United States Air Quality Study (KORUS-AQ) 2016. Atmospheric Chemistry and Physics, 2021, 21, 6331-6345.	1.9	6
356	Upscaling Biogenic Volatile Compound Emissions from Leaves to Landscapes. Tree Physiology, 2013, , $391-414$.	0.9	6
357	Reconciling Observed and Predicted Tropical Rainforest OH Concentrations. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	6
358	Assessment of background ozone concentrations in China and implications for using region-specific volatile organic compounds emission abatement to mitigate air pollution. Environmental Pollution, 2022, 305, 119254.	3.7	6
359	Modeling of Plume Downwash and Enhanced Diffusion near Buildings: Comparison to Wind Tunnel Observations for in Arctic Industrial Site. Journal of Applied Meteorology and Climatology, 1989, 28, 343-353.	1.7	5
360	Three-Dimensional Numerical Simulation of Plume Downwash with ak–ϵ Turbulence Model. Journal of Applied Meteorology and Climatology, 1990, 29, 633-643.	1.7	5

#	Article	IF	CITATIONS
361	Corrigendum to "Overview: oxidant and particle photochemical processes above a south-east Asian tropical rainforest (the OP3 project): introduction, rationale, location characteristics and tools" published in Atmos. Chem. Phys., 10, 169–199, 2010. Atmospheric Chemistry and Physics, 2010, 10, 563-563.	1.9	5
362	Emission of volatile halogenated organic compounds over various Dead Sea landscapes. Atmospheric Chemistry and Physics, 2019, 19, 7667-7690.	1.9	5
363	A portable, low-cost relaxed eddy accumulation (REA) system for quantifying ecosystem-level fluxes of volatile organics. Atmospheric Environment, 2020, 242, 117764.	1.9	5
364	Microanalysis of Primary Biological Particles from Model Grass over Its Life Cycle. ACS Earth and Space Chemistry, 2020, 4, 1895-1905.	1.2	5
365	Cropland trees need to be included for accurate model simulations of land-atmosphere heat fluxes, temperature, boundary layer height, and ozone. Science of the Total Environment, 2021, 751, 141728.	3.9	5
366	Peroxyacetyl Nitrate and Ozone Enhancement at Taehwa Research Forest under the Influence of Seoul Metropolitan Area. Aerosol and Air Quality Research, 2018, 18, 2262-2273.	0.9	5
367	Emission of biogenic volatile organic compounds from warm and oligotrophic seawater in the Eastern Mediterranean. Atmospheric Chemistry and Physics, 2020, 20, 12741-12759.	1.9	5
368	Impact of Drought on Isoprene Fluxes Assessed Using Field Data, Satellite-Based GLEAM Soil Moisture and HCHO Observations from OMI. Remote Sensing, 2022, 14, 2021.	1.8	5
369	An infrared method for plume rise visualization and measurement. Atmospheric Environment Part A General Topics, 1990, 24, 2835-2838.	1.3	4
370	The BEMA-projectâ€"A North American perspective. Atmospheric Environment, 1997, 31, 251-255.	1.9	4
371	Corrigendum to & Corri	1.9	4
372	Corrigendum to & Corri	d 1.9	4
373	Modelling new particle formation events in the South African savannah. South African Journal of Science, 2014, 110, 12.	0.3	4
374	Near-canopy horizontal concentration heterogeneity of semivolatile oxygenated organic compounds and implications for 2-methyltetrols primary emissions. Environmental Science Atmospheres, 2021, 1, 8-20.	0.9	4
375	Bidirectional Exchange of Volatile Organic Compounds. , 2015, , 107-113.		4
376	Development of a reduced-complexity plant canopy physics surrogate model for use in chemical transport models: a case study with GEOS-Chem v12.3.0. Geoscientific Model Development, 2020, 13, 2569-2585.	1.3	4
377	River Winds and Transport of Forest Volatiles in the Amazonian Riparian Ecoregion. Environmental Science & Econology, 2022, 56, 12667-12677.	4.6	4
378	Monoterpene emissions from an understory species, Pteridium aquilinum. Atmospheric Environment, 2012, 54, 308-312.	1.9	3

#	Article	IF	CITATIONS
379	Reducing the negative human-health impacts of bioenergy crop emissions through region-specific crop selection. Environmental Research Letters, 2015, 10, 054004.	2.2	3
380	Bi-directional Exchange of Volatile Organic Compounds. , 2015, , 169-179.		3
381	The role of a suburban forest in controlling vertical trace gas and OH reactivity distributions – a case study for the Seoul metropolitan area. Faraday Discussions, 2021, 226, 537-550.	1.6	3
382	Measurement of oak tree density with Landsat TM data for estimating biogenic isoprene emissions in Tennessee, USA. International Journal of Remote Sensing, 2001, 22, 2793-2810.	1.3	2
383	Analyzing method on biogenic volatile organic compounds. Advances in Atmospheric Sciences, 2002, 19, 64-72.	1.9	2
384	Reply to 'Circadian control of global isoprene emissions'. Nature Geoscience, 2012, 5, 435-436.	5.4	2
385	Impact of heat stress on foliar biogenic volatile organic compound emission and gene expression in tomato (<i>Solanum lycopersicum</i>) seedlings. Elementa, 2022, 10, .	1.1	2
386	TROPOSPHERIC CHEMISTRY AND COMPOSITION Biogenic Hydrocarbons., 2015,, 214-217.		1
387	Unexplored volatile organic compound emitted from petrochemical facilities: implications for ozone production and atmospheric chemistry. Atmospheric Chemistry and Physics, 2021, 21, 11505-11518.	1.9	1
388	Aspectos micrometeorológicos da emissão de monoterpenos em uma floresta na Amazônia central. Ciência E Natura, 0, 40, 150.	0.0	1
389	Evaluation of ozone deposition models over a subalpine forest in Niwot Ridge, Colorado. Idojaras, 2018, 122, 119-143.	0.2	1
390	TROPOSPHERIC CHEMISTRY AND COMPOSITION Biogenic Hydrocarbons (inc. Isoprene)., 2003,, 2385-2389.		O