
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/614388/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The latest advances on nonlinear insulator-based electrokinetic microsystems under direct current and low-frequency alternating current fields: a review. Analytical and Bioanalytical Chemistry, 2022, 414, 885-905.	1.9	13
2	Microscale electrokineticâ€based analysis of intact cells and viruses. Electrophoresis, 2022, 43, 263-287.	1.3	12
3	High-Resolution Charge-Based Electrokinetic Separation of Almost Identical Microparticles. Analytical Chemistry, 2022, 94, 6451-6456.	3.2	12
4	Single <i>Chlamydomonas reinhardtii</i> cell separation from bacterial cells and autoâ€fluorescence tracking with a nanosieve device. Electrophoresis, 2021, 42, 95-102.	1.3	7
5	Analysis of microorganisms with nonlinear electrokinetic microsystems. Electrophoresis, 2021, 42, 588-604.	1.3	9
6	Editorial Dielectrophoresis 2021. Electrophoresis, 2021, 42, 511-512.	1.3	1
7	Microscale nonlinear electrokinetics for the analysis of cellular materials in clinical applications: a review. Mikrochimica Acta, 2021, 188, 104.	2.5	11
8	Fine-Tuning Electrokinetic Injections Considering Nonlinear Electrokinetic Effects in Insulator-Based Devices. Micromachines, 2021, 12, 628.	1.4	7
9	On the potential of microscale electrokinetic cascade devices. Electrophoresis, 2021, 42, 2474-2482.	1.3	4
10	Amplification factor in DC insulator-based electrokinetic devices: a theoretical, numerical, and experimental approach to operation voltage reduction for particle trapping. Lab on A Chip, 2021, 21, 4596-4607.	3.1	11
11	Continuous flow separation of particles with insulator-based dielectrophoresis chromatography. Analytical and Bioanalytical Chemistry, 2020, 412, 3891-3902.	1.9	18
12	. Electrophoresis, 2020, 41, 1825-1825.	1.3	0
13	Electrokinetic characterization of synthetic protein nanoparticles. Beilstein Journal of Nanotechnology, 2020, 11, 1556-1567.	1.5	11
14	Simultaneous Determination of Linear and Nonlinear Electrophoretic Mobilities of Cells and Microparticles. Analytical Chemistry, 2020, 92, 14885-14891.	3.2	30
15	Direct Current Electrokinetic Particle Trapping in Insulator-Based Microfluidics: Theory and Experiments. Analytical Chemistry, 2020, 92, 12871-12879.	3.2	59
16	Determination of the Empirical Electrokinetic Equilibrium Condition of Microorganisms in Microfluidic Devices. Biosensors, 2020, 10, 148.	2.3	11
17	Rapid <i>Escherichia coli</i> Trapping and Retrieval from Bodily Fluids via a Three-Dimensional Bead-Stacked Nanodevice. ACS Applied Materials & Interfaces, 2020, 12, 7888-7896.	4.0	27
18	Creation of an electrokinetic characterization library for the detection and identification of biological cells. Analytical and Bioanalytical Chemistry, 2020, 412, 3935-3945.	1.9	26

#	Article	IF	CITATIONS
19	Microscale electrokinetic assessments of proteins employing insulating structures. Current Opinion in Chemical Engineering, 2020, 29, 9-16.	3.8	22
20	On the recent developments of insulatorâ€based dielectrophoresis: A review. Electrophoresis, 2019, 40, 358-375.	1.3	100
21	Analysis of Bacteriophages with Insulator-Based Dielectrophoresis. Micromachines, 2019, 10, 450.	1.4	25
22	Low frequency cyclical potentials for fine tuning insulator-based dielectrophoretic separations. Biomicrofluidics, 2019, 13, 044114.	1.2	12
23	On the use of correction factors for the mathematical modeling of insulator based dielectrophoretic devices. Electrophoresis, 2019, 40, 2541-2552.	1.3	29
24	Joule heating effects in optimized insulatorâ€based dielectrophoretic devices: An interplay between post geometry and temperature rise. Electrophoresis, 2019, 40, 1408-1416.	1.3	31
25	Material-selective separation of mixed microparticles via insulator-based dielectrophoresis. Biomicrofluidics, 2019, 13, 064112.	1.2	19
26	The Next Forty Years of Electrophoresis. Electrophoresis, 2019, 40, 225-226.	1.3	0
27	Assessment of submicron particle zeta potential in simple electrokinetic microdevices. Electrophoresis, 2019, 40, 1395-1399.	1.3	7
28	Separating large microscale particles by exploiting charge differences with dielectrophoresis. Journal of Chromatography A, 2018, 1545, 84-92.	1.8	23
29	Ultrathin nanoporous membranes for insulator-based dielectrophoresis. Nanotechnology, 2018, 29, 235704.	1.3	8
30	Simple Approach to Reducing Particle Trapping Voltage in Insulator-Based Dielectrophoretic Systems. Analytical Chemistry, 2018, 90, 4310-4315.	3.2	30
31	Editorial—Dielectrophoresis 2017. Electrophoresis, 2017, 38, 1405-1406.	1.3	6
32	Exploiting Particle Mutual Interactions To Enable Challenging Dielectrophoretic Processes. Analytical Chemistry, 2017, 89, 8459-8467.	3.2	16
33	Electro―and Liquid Phaseâ€Separations (ITP 2016). Electrophoresis, 2017, 38, 1537-1537.	1.3	0
34	Assessment of Sub-Micron Particles by Exploiting Charge Differences with Dielectrophoresis. Micromachines, 2017, 8, 239.	1.4	22
35	Dielectrophoretic manipulation of particle mixtures employing asymmetric insulating posts. Electrophoresis, 2016, 37, 282-290.	1.3	38
36	Polarization behavior of polystyrene particles under direct current and lowâ€frequency (<1 kHz) electric fields in dielectrophoretic systems. Electrophoresis, 2016, 37, 635-644.	1.3	16

#	Article	IF	CITATIONS
37	Refinement of current monitoring methodology for electroosmotic flow assessment under low ionic strength conditions. Biomicrofluidics, 2016, 10, 033104.	1.2	36
38	Focus on the London Dielectrophoresis 2014 Meeting. Electrophoresis, 2015, 36, 1083-1083.	1.3	0
39	Isolation and enrichment of low abundant particles with insulator-based dielectrophoresis. Biomicrofluidics, 2015, 9, 064113.	1.2	34
40	Assessment of cell viability after manipulation with insulatorâ€based dielectrophoresis. Electrophoresis, 2015, 36, 1479-1484.	1.3	38
41	Experimental and theoretical study of dielectrophoretic particle trapping in arrays of insulating structures: Effect of particle size and shape. Electrophoresis, 2015, 36, 1086-1097.	1.3	53
42	Editorial. Electrophoresis, 2015, 36, 1385-1385.	1.3	6
43	Design of insulator-based dielectrophoretic devices: Effect of insulator posts characteristics. Journal of Chromatography A, 2015, 1422, 325-333.	1.8	34
44	Applications of Dielectrophoresis in Microfluidics. RSC Detection Science, 2014, , 192-223.	0.0	5
45	Joule heating effects on particle immobilization in insulatorâ€based dielectrophoretic devices. Electrophoresis, 2014, 35, 352-361.	1.3	62
46	2013 AES Annual Meeting. Electrophoresis, 2014, 35, 1767-1767.	1.3	0
47	Dynamic microparticle manipulation with an electroosmotic flow gradient in lowâ€frequency alternating current dielectrophoresis. Electrophoresis, 2014, 35, 362-373.	1.3	29
48	Effect of insulating posts geometry on particle manipulation in insulator based dielectrophoretic devices. Journal of Chromatography A, 2014, 1344, 99-108.	1.8	46
49	Sperm cells manipulation employing dielectrophoresis. Bioprocess and Biosystems Engineering, 2013, 36, 1353-1362.	1.7	28
50	An electric stimulation system for electrokinetic particle manipulation in microfluidic devices. Review of Scientific Instruments, 2013, 84, 035103.	0.6	5
51	Simultaneous electrokinetic flow and dielectrophoretic trapping using perpendicular static and dynamic electric fields. Microfluidics and Nanofluidics, 2013, 15, 599-609.	1.0	16
52	Particle Manipulation in Dielectrophoretic Devices. , 2013, , .		0
53	Editorial. Electrophoresis, 2013, 34, 951-951.	1.3	8
54	Particle Manipulation in Insulator Based Dielectrophoretic Devices1. Journal of Nanotechnology in Engineering and Medicine, 2013, 4, .	0.8	10

#	Article	IF	CITATIONS
55	An application specific multi-channel stimulator for electrokinetically-driven microfluidic devices. , 2011, , .		4
56	Assessment of microalgae viability employing insulator-based dielectrophoresis. Microfluidics and Nanofluidics, 2011, 10, 1305-1315.	1.0	51
57	Dielectrophoretic monitoring of microorganisms in environmental applications. Electrophoresis, 2011, 32, 2331-2357.	1.3	66
58	Insulatorâ€based dielectrophoresis of microorganisms: Theoretical and experimental results. Electrophoresis, 2011, 32, 2502-2511.	1.3	48
59	Separation of mixtures of particles in a multipart microdevice employing insulatorâ€based dielectrophoresis. Electrophoresis, 2011, 32, 2456-2465.	1.3	46
60	Dielectrophoresis 2011 - Part I. Electrophoresis, 2011, 32, 2231-2231.	1.3	7
61	Dielectrophoresis 2011 – Part I. Electrophoresis, 2011, 32, 2231-2231.	1.3	3
62	Electrokinetic Mobilities Characterization and Rapid Detection of Microorganisms in Glass Microchannels. Chemical Engineering and Technology, 2011, 34, 371-378.	0.9	10
63	A continuous DC-insulator dielectrophoretic sorter of microparticles. Journal of Chromatography A, 2011, 1218, 1780-1789.	1.8	60
64	On the Selectivity of an Insulator-Based Dielectrophoretic Microdevice. Separation Science and Technology, 2011, 46, 384-394.	1.3	14
65	Microscale Electrokinetics: Dielectrophoretic Manipulation of Particles. , 2011, , .		0
66	Simultaneous concentration and separation of microorganisms: insulator-based dielectrophoretic approach. Analytical and Bioanalytical Chemistry, 2010, 396, 1805-1816.	1.9	86
67	Controlled microparticle manipulation employing low frequency alternating electric fields in an array of insulators. Lab on A Chip, 2010, 10, 3235.	3.1	41
68	DNA manipulation by means of insulatorâ€based dielectrophoresis employing direct current electric fields. Electrophoresis, 2009, 30, 4195-4205.	1.3	89
69	Characterization of electrokinetic mobility of microparticles in order to improve dielectrophoretic concentration. Analytical and Bioanalytical Chemistry, 2009, 394, 293-302.	1.9	71
70	Prediction of trapping zones in an insulator-based dielectrophoretic device. Lab on A Chip, 2009, 9, 2896.	3.1	51
71	Extraction and Purification of Bioproducts and Nanoparticles using Aqueous Twoâ€Phase Systems Strategies. Chemical Engineering and Technology, 2008, 31, 838-845.	0.9	117
72	Performance characterization of an insulatorâ€based dielectrophoretic microdevice. Electrophoresis, 2008, 29, 3115-3122.	1.3	66

#	Article	IF	CITATIONS
73	Protein manipulation with insulator-based dielectrophoresis and direct current electric fields. Journal of Chromatography A, 2008, 1206, 45-51.	1.8	118
74	Insulator Based Dielectrophoresis: Effects of Bulk Medium Properties. , 2007, , 177.		0
75	Dielectrophoresis for the manipulation of nanobioparticles. Electrophoresis, 2007, 28, 4521-4538.	1.3	182
76	A Comparison of Insulator-Based Dielectrophoretic Devices for the Monitoring and Separation of Waterborne Pathogens as a Function of Microfabrication Technique. ACS Symposium Series, 2007, , 133-157.	0.5	0
77	Determination of adsorption isotherms of proteins by H-root method: Comparison between open micro-channels and conventional packed columns. Journal of Chromatography A, 2005, 1070, 201-205.	1.8	1
78	An insulator-based (electrodeless) dielectrophoretic concentrator for microbes in water. Journal of Microbiological Methods, 2005, 62, 317-326.	0.7	163
79	Insulator-based dielectrophoresis for the selective concentration and separation of live bacteria in water. Electrophoresis, 2004, 25, 1695-1704.	1.3	313
80	On the potential of electrochemically modulated liquid chromatography of proteins in a micro open parallel plate separator. Journal of Separation Science, 2004, 27, 667-674.	1.3	4
81	Effectiveness of the H-root method for determining adsorption isotherms of protein–salt systems in open micro-channels. Journal of Chromatography A, 2004, 1036, 61-72.	1.8	2
82	Dielectrophoretic Concentration and Separation of Live and Dead Bacteria in an Array of Insulators. Analytical Chemistry, 2004, 76, 1571-1579.	3.2	429
83	Comparison of preparative characteristics of micro open parallel plate separators and microbore columns for concentration of trace species by displacement chromatography. Journal of Chromatography A, 2003, 989, 3-17.	1.8	2
84	PERFORMANCE CHARACTERISTICS OF NOVEL OPEN PARALLEL PLATE SEPARATOR. Separation Science and Technology, 2002, 37, 2745-2762.	1.3	6