

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6143852/publications.pdf Version: 2024-02-01

VIANCELL

#	Article	IF	CITATIONS
1	Advances of entropy-stabilized homologous compounds for electrochemical energy storage. Journal of Energy Chemistry, 2022, 67, 276-289.	7.1	22
2	Synergetic Anion–Cation Redox Ensures a Highly Stable Layered Cathode for Sodiumâ€lon Batteries. Advanced Science, 2022, 9, e2105280.	5.6	27
3	Regulating dissolution chemistry of nitrates in carbonate electrolyte for high-stable lithium metal batteries. Journal of Energy Chemistry, 2022, 73, 422-428.	7.1	7
4	Anion Intercalation of VS ₄ Triggers Atomic Sulfur Transfer to Organic Disulfide in Rechargeable Lithium Battery. Advanced Functional Materials, 2021, 31, 2009875.	7.8	28
5	Cu(NO3)2 as efficient electrolyte additive for 4ÂV class Li metal batteries with ultrahigh stability. Energy Storage Materials, 2021, 37, 1-7.	9.5	33
6	A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent. Nature Energy, 2021, 6, 653-662.	19.8	175
7	Tuning Solvation Behavior of Ester-Based Electrolytes toward Highly Stable Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 40582-40589.	4.0	9
8	<i>In Situ</i> Synthesis of Vacancy-Rich Titanium Sulfide Confined in a Hollow Carbon Nanocage as an Efficient Sulfur Host for Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 10104-10113.	2.5	15
9	SnP0.94 nanodots confined carbon aerogel with porous hollow superstructures as an exceptional polysulfide electrocatalyst and "adsorption nest―to enable enhanced lithium-sulfur batteries. Chemical Engineering Journal, 2021, 420, 129724.	6.6	16
10	Nitrate additives for lithium batteries: Mechanisms, applications, and prospects. EScience, 2021, 1, 108-123.	25.0	98
11	Identifying Anionic Redox Activity within the Related O3- and P2-Type Cathodes for Sodium-Ion Battery. ACS Applied Materials & Interfaces, 2020, 12, 851-857.	4.0	28
12	Porous Hollow Carbon Aerogel-Assembled Core@Polypyrrole Nanoparticle Shell as an Efficient Sulfur Host through a Tunable Molecular Self-Assembly Method for Rechargeable Lithium/Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 15822-15833.	3.2	29
13	Controlled synthesis of three-dimensional porous carbon aerogel via catalysts: effects of morphologies toward the performance of lithium-sulfur batteries. Solid State Ionics, 2020, 347, 115248.	1.3	24
14	Highly Concentrated Electrolyte towards Enhanced Energy Density and Cycling Life of Dualâ€lon Battery. Angewandte Chemie - International Edition, 2020, 59, 17924-17930.	7.2	99
15	Highly Concentrated Electrolyte towards Enhanced Energy Density and Cycling Life of Dualâ€lon Battery. Angewandte Chemie, 2020, 132, 18080-18086.	1.6	6
16	Stabilizing Reversible Oxygen Redox Chemistry in Layered Oxides for Sodiumâ€ l on Batteries. Advanced Energy Materials, 2020, 10, 1903785.	10.2	87
17	A Superlattice‧tabilized Layered Oxide Cathode for Sodiumâ€ŀon Batteries. Advanced Materials, 2020, 32, e1907936.	11.1	50
18	Sulfur double encapsulated in a porous hollow carbon aerogel with interconnected micropores for advanced lithium-sulfur batteries. Journal of Alloys and Compounds, 2020, 834, 155190.	2.8	24

Xiang Li

#	Article	IF	CITATIONS
19	Unraveling the anionic oxygen loss and related structural evolution within O3-type Na layered oxide cathodes. Journal of Materials Chemistry A, 2019, 7, 20405-20413.	5.2	23
20	Restraining Oxygen Loss and Suppressing Structural Distortion in a Newly Ti-Substituted Layered Oxide P2-Na _{0.66} Li _{0.22} Ti _{0.15} Mn _{0.63} O ₂ . ACS Energy Letters, 2019, 4, 2409-2417.	8.8	112
21	A New Type of Liâ€Rich Rockâ€Salt Oxide Li ₂ Ni _{1/3} Ru _{2/3} O ₃ with Reversible Anionic Redox Chemistry. Advanced Materials, 2019, 31, e1807825.	11.1	90
22	Na ₂ Ru _{1â^`x} Mn _x O ₃ as the cathode for sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 4395-4399.	5.2	24
23	Lithium-Doping Stabilized High-Performance P2–Na _{0.66} Li _{0.18} Fe _{0.12} Mn _{0.7} O ₂ Cathode for Sodium Ion Batteries. Journal of the American Chemical Society, 2019, 141, 6680-6689.	6.6	187
24	A Concentrated Ternaryâ€Salts Electrolyte for High Reversible Li Metal Battery with Slight Excess Li. Advanced Energy Materials, 2019, 9, 1803372.	10.2	167
25	Direct Visualization of the Reversible O ^{2â^} /O ^{â^} Redox Process in Liâ€Rich Cathode Materials. Advanced Materials, 2018, 30, e1705197.	11.1	264
26	Reversible anionic redox activity in Na ₃ RuO ₄ cathodes: a prototype Na-rich layered oxide. Energy and Environmental Science, 2018, 11, 299-305.	15.6	126
27	MOF-Based Separator in an Li–O ₂ Battery: An Effective Strategy to Restrain the Shuttling of Dual Redox Mediators. ACS Energy Letters, 2018, 3, 463-468.	8.8	151
28	Amorphous P ₂ S ₅ /C Composite as High-Performance Anode Materials for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 16-20.	4.0	20
29	Boosting the Cycle Life of Aprotic Li–O ₂ Batteries via a Photoâ€Assisted Hybrid Li ₂ O ₂ â€Scavenging Strategy. Small Methods, 2018, 2, 1700284.	4.6	47
30	Highâ€Voltage Liâ€Ion Fullâ€Cells with Ultralong Term Cycle Life at Elevated Temperature. Advanced Energy Materials, 2018, 8, 1802322.	10.2	34
31	A Multifunctional Sillyâ€Putty Nanocomposite Spontaneously Repairs Cathode Composite for Advanced Liâ^'S Batteries. Advanced Functional Materials, 2018, 28, 1804777.	7.8	52
32	A Hybrid Electrolytes Design for Capacityâ€Equivalent Dualâ€Graphite Battery with Superior Longâ€Term Cycle Life. Advanced Energy Materials, 2018, 8, 1801120.	10.2	50
33	An ultrafast rechargeable lithium metal battery. Journal of Materials Chemistry A, 2018, 6, 15517-15522.	5.2	43
34	A Highâ€Crystalline NaV _{1.25} Ti _{0.75} O ₄ Anode for Wideâ€Temperature Sodiumâ€Ion Battery. Advanced Energy Materials, 2018, 8, 1801162.	10.2	41
35	A Li-ion oxygen battery with Li-Si alloy anode prepared by a mechanical method. Electrochemistry Communications, 2017, 78, 11-15.	2.3	27
36	A battery with sulphur cathode and lithiated graphite anode based on Lithium shuttle reaction. Materials Technology, 2016, 31, 517-520.	1.5	9

XIANG LI

#	Article	IF	CITATIONS
37	Research on Effective Oxygen Window Influencing the Capacity of Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2016, 8, 10375-10382.	4.0	24
38	Progress in research on Li–CO2 batteries: Mechanism, catalyst and performance. Chinese Journal of Catalysis, 2016, 37, 1016-1024.	6.9	101