
Steven W Wilhelm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/614378/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>Aureococcus anophagefferens</i> (Pelagophyceae) genomes improve evaluation of nutrient acquisition strategies involved in brown tide dynamics. Journal of Phycology, 2022, 58, 146-160.	1.0	10
2	Changes in Microbiome Activity and Sporadic Viral Infection Help Explain Observed Variability in Microcosm Studies. Frontiers in Microbiology, 2022, 13, 809989.	1.5	4
3	Trace metal contents of autotrophic flagellates from contrasting openâ€ocean ecosystems. Limnology and Oceanography Letters, 2022, 7, 354-362.	1.6	6
4	Models predict planned phosphorus load reduction will make Lake Erie more toxic. Science, 2022, 376, 1001-1005.	6.0	62
5	Metatranscriptomic Sequencing of Winter and Spring Planktonic Communities from Lake Erie, a Laurentian Great Lake. Microbiology Resource Announcements, 2022, 11, .	0.3	3
6	Bioavailable iron titrations reveal oceanic <i>Synechococcus</i> ecotypes optimized for different iron availabilities. ISME Communications, 2022, 2, .	1.7	8
7	Metagenome-Assembled Genome Sequences of Raphidiopsis raciborskii and Planktothrix agardhii from a Cyanobacterial Bloom in Kissena Lake, New York, USA. Microbiology Resource Announcements, 2021, 10, .	0.3	1
8	Elevated pH Conditions Associated With Microcystis spp. Blooms Decrease Viability of the Cultured Diatom Fragilaria crotonensis and Natural Diatoms in Lake Erie. Frontiers in Microbiology, 2021, 12, 598736.	1.5	31
9	Transcriptomic Responses of Four Pelagophytes to Nutrient (N, P) and Light Stress. Frontiers in Marine Science, 2021, 8, .	1.2	3
10	Metatranscriptome Library Preparation Influences Analyses of Viral Community Activity During a Brown Tide Bloom. Frontiers in Microbiology, 2021, 12, 664189.	1.5	12
11	Nutrient Loading and Viral Memory Drive Accumulation of Restriction Modification Systems in Bloom-Forming Cyanobacteria. MBio, 2021, 12, e0087321.	1.8	7
12	Environmental Studies of Cyanobacterial Harmful Algal Blooms Should Include Interactions with the Dynamic Microbiome. Environmental Science & Technology, 2021, 55, 12776-12779.	4.6	17
13	Genomic signatures of Lake Erie bacteria suggest interaction in the Microcystis phycosphere. PLoS ONE, 2021, 16, e0257017.	1.1	28
14	Roles of Nutrient Limitation on Western Lake Erie CyanoHAB Toxin Production. Toxins, 2021, 13, 47.	1.5	19
15	Averting an Outbreak of SARS-CoV-2 in a University Residence Hall through Wastewater Surveillance. Microbiology Spectrum, 2021, 9, e0079221.	1.2	47
16	A comparative study of metatranscriptomic assessment methods to characterize Microcystis blooms. Limnology and Oceanography: Methods, 2021, 19, 846-854.	1.0	1
17	Influence of light on the infection of Aureococcus anophagefferens CCMP 1984 by a "giant virus― PLoS ONE, 2020, 15, e0226758.	1.1	11
18	Structural and Proteomic Studies of the Aureococcus anophagefferens Virus Demonstrate a Global Distribution of Virus-Encoded Carbohydrate Processing. Frontiers in Microbiology, 2020, 11, 2047.	1.5	5

#	Article	IF	CITATIONS
19	Intermittent disturbance benefits colony size, biomass and dominance of Microcystis in Lake Taihu under field simulation condition. Harmful Algae, 2020, 99, 101909.	2.2	18
20	Episodic Decrease in Temperature Increases mcy Gene Transcription and Cellular Microcystin in Continuous Cultures of Microcystis aeruginosa PCC 7806. Frontiers in Microbiology, 2020, 11, 601864.	1.5	23
21	Nitrogen flux into metabolites and microcystins changes in response to different nitrogen sources in <scp><i>Microcystis aeruginosa</i>NIES</scp> â€843. Environmental Microbiology, 2020, 22, 2419-2431.	1.8	18
22	Scientists' Warning to Humanity: Rapid degradation of the world's large lakes. Journal of Great Lakes Research, 2020, 46, 686-702.	0.8	140
23	Flaming as part of aseptic technique increases CO _{2 (g)} and decreases pH in freshwater culture media. Limnology and Oceanography: Methods, 2020, 18, 211-219.	1.0	0
24	SMRT Sequencing of Paramecium Bursaria Chlorella Virus-1 Reveals Diverse Methylation Stability in Adenines Targeted by Restriction Modification Systems. Frontiers in Microbiology, 2020, 11, 887.	1.5	7
25	Lysogenic reproductive strategies of viral communities vary with soil depth and are correlated with bacterial diversity. Soil Biology and Biochemistry, 2020, 144, 107767.	4.2	55
26	The "Neglected Viruses―of Taihu: Abundant Transcripts for Viruses Infecting Eukaryotes and Their Potential Role in Phytoplankton Succession. Frontiers in Microbiology, 2020, 11, 338.	1.5	17
27	The Complicated and Confusing Ecology of <i>Microcystis</i> Blooms. MBio, 2020, 11, .	1.8	73
28	Internal Nitrogen Pools Shape the Infection of Aureococcus anophagefferens CCMP 1984 by a Giant Virus. Frontiers in Microbiology, 2020, 11, 492.	1.5	3
29	Tracing the active genetic diversity of Microcystis and Microcystis phage through a temporal survey of Taihu. PLoS ONE, 2020, 15, e0244482.	1.1	9
30	Nutrient Cycling. , 2020, , 1-7.		0
31	Viral abundance and diversity vary with depth in a southeastern United States agricultural ultisol. Soil Biology and Biochemistry, 2019, 137, 107546.	4.2	37
32	The Human Cytomegalovirus Chemokine vCXCL-1 Modulates Normal Dissemination Kinetics of Murine Cytomegalovirus In Vivo. MBio, 2019, 10, .	1.8	9
33	Metatranscriptomic Analyses of Diel Metabolic Functions During a Microcystis Bloom in Western Lake Erie (United States). Frontiers in Microbiology, 2019, 10, 2081.	1.5	22
34	Effects of mixing intensity on colony size and growth of Microcystis aeruginosa. Annales De Limnologie, 2019, 55, 12.	0.6	10
35	One-time nitrogen fertilization shifts switchgrass soil microbiomes within a context of larger spatial and temporal variation. PLoS ONE, 2019, 14, e0211310.	1.1	9
36	Cryopreservation of Paramecium bursaria Chlorella Virus-1 during an active infection cycle of its host. PLoS ONE, 2019, 14, e0211755.	1.1	4

#	Article	IF	CITATIONS
37	Urea Is Both a Carbon and Nitrogen Source for Microcystis aeruginosa: Tracking 13C Incorporation at Bloom pH Conditions. Frontiers in Microbiology, 2019, 10, 1064.	1.5	75
38	Genome and Environmental Activity of a Chrysochromulina parva Virus and Its Virophages. Frontiers in Microbiology, 2019, 10, 703.	1.5	41
39	Nutrient stoichiometry shapes microbial coevolution. Ecology Letters, 2019, 22, 1009-1018.	3.0	25
40	Spatial and Temporal Variation in Paralytic Shellfish Toxin Production by Benthic Microseira (Lyngbya) wollei in a Freshwater New York Lake. Toxins, 2019, 11, 44.	1.5	24
41	Viral and bacterial community responses to stimulated Fe(III)â€bioreduction during simulated subsurface bioremediation. Environmental Microbiology, 2019, 21, 2043-2055.	1.8	32
42	Insight Into the Molecular Mechanisms for Microcystin Biodegradation in Lake Erie and Lake Taihu. Frontiers in Microbiology, 2019, 10, 2741.	1.5	18
43	Minimum Information about an Uncultivated Virus Genome (MIUViC). Nature Biotechnology, 2019, 37, 29-37.	9.4	414
44	<i>Cylindrospermopsis raciborskii</i> Virus and host: genomic characterization and ecological relevance. Environmental Microbiology, 2019, 21, 1942-1956.	1.8	16
45	Seasonally Relevant Cool Temperatures Interact with N Chemistry to Increase Microcystins Produced in Lab Cultures of <i>Microcystis aeruginosa</i> NIES-843. Environmental Science & Technology, 2018, 52, 4127-4136.	4.6	55
46	Viruses of Eukaryotic Algae: Diversity, Methods for Detection, and Future Directions. Viruses, 2018, 10, 487.	1.5	56
47	Diversity of Active Viral Infections within the Sphagnum Microbiome. Applied and Environmental Microbiology, 2018, 84, .	1.4	27
48	Seasonal Gene Expression and the Ecophysiological Implications of Toxic <i>Microcystis aeruginosa</i> Blooms in Lake Taihu. Environmental Science & Technology, 2018, 52, 11049-11059.	4.6	79
49	Strength in numbers: Collaborative science for new experimental model systems. PLoS Biology, 2018, 16, e2006333.	2.6	15
50	Infection by a Giant Virus (AaV) Induces Widespread Physiological Reprogramming in Aureococcus anophagefferens CCMP1984 – A Harmful Bloom Algae. Frontiers in Microbiology, 2018, 9, 752.	1.5	60
51	Response of Microcystis aeruginosa FACHB-905 to different nutrient ratios and changes in phosphorus chemistry. Journal of Oceanology and Limnology, 2018, 36, 1040-1052.	0.6	9
52	Algal viruses and cyanophages have distinct distributions in Lake Erie sediments. Aquatic Microbial Ecology, 2018, 82, 161-175.	0.9	2
53	Genomic exploration of individual giant ocean viruses. ISME Journal, 2017, 11, 1736-1745.	4.4	40
54	Spatiotemporal dynamics of bacterial community composition in large shallow eutrophic Lake Taihu: High overlap between freeâ€ŀiving and particleâ€attached assemblages. Limnology and Oceanography, 2017, 62, 1366-1382.	1.6	101

#	Article	IF	CITATIONS
55	Ecophysiological Examination of the Lake Erie <i>Microcystis</i> Bloom in 2014: Linkages between Biology and the Water Supply Shutdown of Toledo, OH. Environmental Science & Technology, 2017, 51, 6745-6755.	4.6	196
56	Spatial and temporal variability in the nitrogen cyclers of hypereutrophic Lake Taihu. FEMS Microbiology Ecology, 2017, 93, .	1.3	45
57	Community Biological Ammonium Demand: A Conceptual Model for Cyanobacteria Blooms in Eutrophic Lakes. Environmental Science & Technology, 2017, 51, 7785-7793.	4.6	56
58	Virus-host relationships of marine single-celled eukaryotes resolved from metatranscriptomics. Nature Communications, 2017, 8, 16054.	5.8	100
59	Viral ecology comes of age. Environmental Microbiology Reports, 2017, 9, 33-35.	1.0	81
60	A Student's Guide to Giant Viruses Infecting Small Eukaryotes: From Acanthamoeba to Zooxanthellae. Viruses, 2017, 9, 46.	1.5	52
61	Contrasting seasonal drivers of virus abundance and production in the North Pacific Ocean. PLoS ONE, 2017, 12, e0184371.	1.1	16
62	Microcystin-LR does not induce alterations to transcriptomic or metabolomic profiles of a model heterotrophic bacterium. PLoS ONE, 2017, 12, e0189608.	1.1	4
63	Molecular prediction of lytic vs lysogenic states for Microcystis phage: Metatranscriptomic evidence of lysogeny during large bloom events. PLoS ONE, 2017, 12, e0184146.	1.1	37
64	Functional Characteristics of the Gut Microbiome in C57BL/6 Mice Differentially Susceptible to Plasmodium yoelii. Frontiers in Microbiology, 2016, 7, 1520.	1.5	46
65	Dynamic, mechanistic, molecularâ€level modelling of cyanobacteria: <i>Anabaena</i> and nitrogen interaction. Environmental Microbiology, 2016, 18, 2721-2731.	1.8	25
66	A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp Harmful Algae, 2016, 54, 4-20.	2.2	776
67	Global solutions to regional problems: Collecting global expertise to address the problem of harmful cyanobacterial blooms. A Lake Erie case study. Harmful Algae, 2016, 54, 223-238.	2.2	231
68	The re-eutrophication of Lake Erie: Harmful algal blooms and hypoxia. Harmful Algae, 2016, 56, 44-66.	2.2	389
69	It Takes Two to Tango: When and Where Dual Nutrient (N & P) Reductions Are Needed to Protect Lakes and Downstream Ecosystems. Environmental Science & Technology, 2016, 50, 10805-10813.	4.6	483
70	Adaptations to photoautotrophy associated with seasonal ice cover in a large lake revealed by metatranscriptome analysis of a winter diatom bloom. Journal of Great Lakes Research, 2016, 42, 1007-1015.	0.8	20
71	Re-examination of the relationship between marine virus and microbial cell abundances. Nature Microbiology, 2016, 1, 15024.	5.9	264
72	Diel regulation of hydrogen peroxide defenses by open ocean microbial communities. Journal of Plankton Research, 2016, 38, 1103-1114.	0.8	35

#	Article	IF	CITATIONS
73	Diversity and dynamics of algal Megaviridae members during a harmful brown tide caused by the pelagophyte, <i>Aureococcus anophagefferens</i> . FEMS Microbiology Ecology, 2016, 92, fiw058.	1.3	41
74	Urea in Lake Erie: Organic nutrient sources as potentially important drivers of phytoplankton biomass. Journal of Great Lakes Research, 2016, 42, 599-607.	0.8	57
75	Composition of the gut microbiota modulates the severity of malaria. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2235-2240.	3.3	198
76	Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean. ISME Journal, 2016, 10, 500-513.	4.4	103
77	Standing on the Shoulders of Giant Viruses: Five Lessons Learned about Large Viruses Infecting Small Eukaryotes and the Opportunities They Create. PLoS Pathogens, 2016, 12, e1005752.	2.1	30
78	Single-cell PCR of the luciferase conserved catalytic domain reveals a unique cluster in the toxic bioluminescent dinoflagellate Pyrodinium bahamense. Aquatic Biology, 2016, 25, 139-150.	0.5	5
79	Why are biotic iron pools uniform across high―and lowâ€iron pelagic ecosystems?. Global Biogeochemical Cycles, 2015, 29, 1028-1043.	1.9	37
80	Examining the impact of acetylene on N-fixation and the active sediment microbial community. Frontiers in Microbiology, 2015, 6, 418.	1.5	63
81	Iron stable isotopes track pelagic iron cycling during a subtropical phytoplankton bloom. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E15-20.	3.3	63
82	A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes. ISME Journal, 2015, 9, 1352-1364.	4.4	223
83	Metatranscriptomic Evidence for Co-Occurring Top-Down and Bottom-Up Controls on Toxic Cyanobacterial Communities. Applied and Environmental Microbiology, 2015, 81, 3268-3276.	1.4	50
84	Substrate specificity of aquatic extracellular peptidases assessed by competitive inhibition assays using synthetic substrates. Aquatic Microbial Ecology, 2015, 75, 271-281.	0.9	41
85	Phage infection of an environmentally relevant marine bacterium alters host metabolism and lysate composition. ISME Journal, 2014, 8, 1089-1100.	4.4	127
86	Genome of brown tide virus (AaV), the little giant of the Megaviridae, elucidates NCLDV genome expansion and host–virus coevolution. Virology, 2014, 466-467, 60-70.	1.1	86
87	Genome Sequence of the Sulfitobacter sp. Strain 2047-Infecting Lytic Phage ΦCB2047-B. Genome Announcements, 2014, 2, .	0.8	13
88	Temporal changes in particle-associated microbial communities after interception by nonlethal sediment traps. FEMS Microbiology Ecology, 2014, 87, 153-163.	1.3	50
89	The Fate of Microcystins in the Environment and Challenges for Monitoring. Toxins, 2014, 6, 3354-3387.	1.5	138
90	Seasonal changes in microbial community structure and activity imply winter production is linked to summer hypoxia in a large lake. FEMS Microbiology Ecology, 2014, 87, 475-485.	1.3	86

#	Article	IF	CITATIONS
91	Toward More Transparent and Reproducible Omics Studies Through a Common Metadata Checklist and Data Publications. OMICS A Journal of Integrative Biology, 2014, 18, 10-14.	1.0	54
92	Algal blooms: Noteworthy nitrogen. Science, 2014, 346, 175-175.	6.0	138
93	The elemental composition of virus particles: implications for marine biogeochemical cycles. Nature Reviews Microbiology, 2014, 12, 519-528.	13.6	273
94	Taxonomic assessment of a toxic cyanobacteria shift in hypereutrophic Grand Lake St. Marys (Ohio,) Tj ETQq0 0	Ο r <u>g</u> BT /Ον	verlock 10 Tf
95	Pelagic iron cycling during the subtropical spring bloom, east of New Zealand. Marine Chemistry, 2014, 160, 18-33.	0.9	35
96	Status, causes and controls of cyanobacterial blooms in Lake Erie. Journal of Great Lakes Research, 2014, 40, 215-225.	0.8	186
97	Nutrients drive transcriptional changes that maintain metabolic homeostasis but alter genome architecture in <i>Microcystis</i> . ISME Journal, 2014, 8, 2080-2092.	4.4	84
98	Differential remineralization of major and trace elements in sinking diatoms. Limnology and Oceanography, 2014, 59, 689-704.	1.6	84
99	Genome Sequences of Two Temperate Phages, ΦCB2047-A and ΦCB2047-C, Infecting <i>Sulfitobacter</i> sp. Strain 2047. Genome Announcements, 2014, 2, .	0.8	16
100	Temporal variation of dissolved methane in a subtropical mesoscale eddy during a phytoplankton bloom in the southwest Pacific Ocean. Progress in Oceanography, 2013, 116, 193-206.	1.5	24
101	Comment: An alternative interpretation of the relationship between TN:TP and microcystins in Canadian lakes. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70, 1265-1268.	0.7	33
102	High abundances of cyanomyoviruses in marine ecosystems demonstrate ecological relevance. FEMS Microbiology Ecology, 2013, 84, 223-234.	1.3	32
103	Complete Genome Sequence of Cyanobacterial Siphovirus KBS2A. Genome Announcements, 2013, 1, .	0.8	12
104	Paralytic shellfish toxins inhibit copper uptake in <i>Chlamydomonas reinhardtii</i> . Environmental Toxicology and Chemistry, 2013, 32, 1388-1395.	2.2	4
105	Toward More Transparent and Reproducible Omics Studies Through a Common Metadata Checklist and Data Publications. Big Data, 2013, 1, 196-201.	2.1	5
106	Elemental quotas and physiology of a southwestern Pacific Ocean plankton community as a function of iron availability. Aquatic Microbial Ecology, 2013, 68, 185-194.	0.9	22
107	Iron plays a role in nitrate drawdown by phytoplankton in Lake Erie surface waters as observed in lake-wide assessments. Canadian Journal of Fisheries and Aquatic Sciences, 2012, 69, 369-381.	0.7	28
108	Inhibition of Copper Uptake in Yeast Reveals the Copper Transporter Ctr1p As a Potential Molecular Target of Saxitoxin. Environmental Science & Technology, 2012, 46, 2959-2966.	4.6	21

#	Article	IF	CITATIONS
109	Microbial control of diatom bloom dynamics in the open ocean. Geophysical Research Letters, 2012, 39,	1.5	61
110	Novel lineages of <i>Prochlorococcus</i> and <i>Synechococcus</i> in the global oceans. ISME Journal, 2012, 6, 285-297.	4.4	186
111	Diatoms abound in ice-covered Lake Erie: An investigation of offshore winter limnology in Lake Erie over the period 2007 to 2010. Journal of Great Lakes Research, 2012, 38, 18-30.	0.8	107
112	Seasonal Si:C ratios in Lake Erie diatoms — Evidence of an active winter diatom community. Journal of Great Lakes Research, 2012, 38, 206-211.	0.8	22
113	Mesozooplankton and microzooplankton grazing during cyanobacterial blooms in the western basin of Lake Erie. Harmful Algae, 2012, 15, 26-35.	2.2	85
114	Evidence against fluvial seeding of recurrent toxic blooms of Microcystis spp. in Lake Erie's western basin. Harmful Algae, 2012, 15, 71-77.	2.2	37
115	Comparative Metagenomics of Toxic Freshwater Cyanobacteria Bloom Communities on Two Continents. PLoS ONE, 2012, 7, e44002.	1.1	158
116	Plasticity of Total and Intracellular Phosphorus Quotas in Microcystis aeruginosa Cultures and Lake Erie Algal Assemblages. Frontiers in Microbiology, 2012, 3, 3.	1.5	44
117	A comparison of biogenic iron quotas during a diatom spring bloom using multiple approaches. Biogeosciences, 2012, 9, 667-687.	1.3	39
118	Ocean viruses and their effects on microbial communities and biogeochemical cycles. F1000 Biology Reports, 2012, 4, 17.	4.0	213
119	Viral and bacterial abundance and production in the Western Pacific Ocean and the relation to other oceanic realms. FEMS Microbiology Ecology, 2012, 79, 359-370.	1.3	36
120	Production of viruses during a spring phytoplankton bloom in the South Pacific Ocean near of New Zealand. FEMS Microbiology Ecology, 2012, 79, 709-719.	1.3	27
121	De-MetaST-BLAST: A Tool for the Validation of Degenerate Primer Sets and Data Mining of Publicly Available Metagenomes. PLoS ONE, 2012, 7, e50362.	1.1	11
122	Global Gene Expression Profiling in Larval Zebrafish Exposed to Microcystin-LR and Microcystis Reveals Endocrine Disrupting Effects of Cyanobacteria. Environmental Science & Technology, 2011, 45, 1962-1969.	4.6	110
123	The relationships between nutrients, cyanobacterial toxins and the microbial community in Taihu (Lake Tai), China. Harmful Algae, 2011, 10, 207-215.	2.2	157
124	Glyphosate influence on phytoplankton community structure in Lake Erie. Journal of Great Lakes Research, 2011, 37, 683-690.	0.8	73
125	Healthy competition. Nature Climate Change, 2011, 1, 300-301.	8.1	12
126	Application of the major capsid protein as a marker of the phylogenetic diversity of Emiliania huxleyi viruses. FEMS Microbiology Ecology, 2011, 76, 373-380.	1.3	36

#	Article	IF	CITATIONS
127	The microbial carbon pump and the oceanic recalcitrant dissolved organic matter pool. Nature Reviews Microbiology, 2011, 9, 555-555.	13.6	73
128	Unraveling the viral tapestry (from inside the capsid out). ISME Journal, 2011, 5, 165-168.	4.4	27
129	A comparison of Fe bioavailability and binding of a catecholate siderophore with virus-mediated lysates from the marine bacterium Vibrio alginolyticus PWH3a. Journal of Experimental Marine Biology and Ecology, 2011, 399, 43-47.	0.7	48
130	Synechococcus growth in the ocean may depend on the lysis of heterotrophic bacteria. Journal of Plankton Research, 2011, 33, 1465-1476.	0.8	66
131	A protocol for enumeration of aquatic viruses by epifluorescence microscopy using Anodiscâ"¢ 13 membranes. BMC Microbiology, 2011, 11, 168.	1.3	14
132	Niche of harmful alga <i>Aureococcus anophagefferens</i> revealed through ecogenomics. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4352-4357.	3.3	256
133	Molecular Enumeration of an Ecologically Important Cyanophage in a Laurentian Great Lake. Applied and Environmental Microbiology, 2011, 77, 6772-6779.	1.4	34
134	ANALYSES OF THE COMPLETE CHLOROPLAST GENOME SEQUENCES OF TWO MEMBERS OF THE PELAGOPHYCEAE: <i>AUREOCOCCUS ANOPHAGEFFERENS</i> CCMP1984 AND <i>AUREOUMBRA LAGUNENSIS</i> CCMP1507 ¹ . Journal of Phycology, 2010, 46, 602-615.	1.0	32
135	Ubiquitous cyanobacterial podoviruses in the global oceans unveiled through viral DNA polymerase gene sequences. ISME Journal, 2010, 4, 1243-1251.	4.4	41
136	Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nature Reviews Microbiology, 2010, 8, 593-599.	13.6	1,278
137	Estimating Virus Production Rates in Aquatic Systems. Journal of Visualized Experiments, 2010, , .	0.2	2
138	Viruses in aquatic ecosystems: important advancements of the last 20 years and prospects for the future in the field of microbial oceanography and limnology. Advances in Oceanography and Limnology, 2010, 1, 97-141.	0.2	45
139	Distribution of calcifying and silicifying phytoplankton in relation to environmental and biogeochemical parameters during the late stages of the 2005 North East Atlantic Spring Bloom. Biogeosciences, 2009, 6, 2155-2179.	1.3	50
140	Transcriptional Profiling of Saccharomyces cerevisiae Upon Exposure to Saxitoxin. Environmental Science & Technology, 2009, 43, 6039-6045.	4.6	10
141	Identifying the Source of Unknown Microcystin Genes and Predicting Microcystin Variants by Comparing Genes within Uncultured Cyanobacterial Cells. Applied and Environmental Microbiology, 2009, 75, 3598-3604.	1.4	12
142	Actinorhodopsin genes discovered in diverse freshwater habitats and among cultivated freshwater <i>Actinobacteria</i> . ISME Journal, 2009, 3, 726-737.	4.4	140
143	PAH Biodegradative Genotypes in Lake Erie Sediments: Evidence for Broad Geographical Distribution of Pyrene-Degrading Mycobacteria. Environmental Science & Technology, 2009, 43, 3467-3473.	4.6	55
144	The response of the virus community to the SEEDS II mesoscale iron fertilization. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56, 2788-2795.	0.6	18

#	Article	IF	CITATIONS
145	The diversity and distribution of toxigenic Microcystis spp. in present day and archived pelagic and sediment samples from Lake Erie. Harmful Algae, 2009, 8, 385-394.	2.2	68
146	Lake Erie Microcystis: Relationship between microcystin production, dynamics of genotypes and environmental parameters in a large lake. Harmful Algae, 2009, 8, 665-673.	2.2	260
147	Effects of increased pCO2 and temperature on the North Atlantic spring bloom. I. The phytoplankton community and biogeochemical response. Marine Ecology - Progress Series, 2009, 388, 13-25.	0.9	227
148	Effects of increased pCO2 and temperature on the North Atlantic spring bloom. III. Dimethylsulfoniopropionate. Marine Ecology - Progress Series, 2009, 388, 41-49.	0.9	33
149	Clobal-scale processes with a nanoscale drive: the role of marine viruses. ISME Journal, 2008, 2, 575-578.	4.4	226
150	ISOLATION OF A NONâ€PHAGEâ€LIKE LYTIC VIRUS INFECTING <i> AUREOCOCCUS ANOPHAGEFFERENS</i> ¹ . Journal of Phycology, 2008, 44, 71-76.	1.0	31
151	Freshwater and marine virioplankton: a brief overview of commonalities and differences. Freshwater Biology, 2008, 53, 1076-1089.	1.2	152
152	Polyphasic characterization of water bloom forming Raphidiopsis species (cyanobacteria) from central China. Harmful Algae, 2008, 7, 146-153.	2.2	44
153	Virus Transport during Infiltration of a Wetting Front into Initially Unsaturated Sand Columns. Environmental Science & Technology, 2008, 42, 1102-1108.	4.6	11
154	Picoplanktonic cyanobacteria in Lakes Superior and Erie: phylogenies of endemic populations and cultured isolates. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2008, 30, 459-465.	0.1	3
155	Grazing and virus-induced mortality of microbial populations before and during the onset of annual hypoxia in Lake Erie. Aquatic Microbial Ecology, 2008, 51, 117-128.	0.9	42
156	Constraints on viral production in the Sargasso Sea and North Atlantic. Aquatic Microbial Ecology, 2008, 52, 233-244.	0.9	33
157	Field methods in the study of toxic cyanobacterial blooms: results and insights from Lake Erie Research. Advances in Experimental Medicine and Biology, 2008, 619, 501-512.	0.8	2
158	A review of planktonic viruses in Lake Erie and their role in phosphorus cycling. , 2008, , 247-270.		6
159	BACTERIAL LYSIS OFAUREOCOCCUS ANOPHAGEFFERENSCCMP 1784 (PELAGOPHYCEAE). Journal of Phycology, 2007, 43, 461-465.	1.0	17
160	Dynamics and short-term survival of toxic cyanobacteria species in ballast water from NOBOB vessels transiting the Great Lakes—implications for HAB invasions. Harmful Algae, 2007, 6, 519-530.	2.2	39
161	The response of bacterial groups to changes in available iron in the Eastern subtropical Pacific Ocean. Journal of Experimental Marine Biology and Ecology, 2007, 348, 11-22.	0.7	17
162	Estimation of Biologically Damaging UV Levels in Marine Surface Waters with DNA and Viral Dosimeters¶. Photochemistry and Photobiology, 2007, 76, 268-273.	1.3	7

#	Article	IF	CITATIONS
163	Variability in the in situ bioavailability of Fe to bacterioplankton communities in the eastern subtropical Pacific Ocean. Aquatic Microbial Ecology, 2007, 46, 239-251.	0.9	6
164	Ecological aspects of viral infection and lysis in the harmful brown tide alga Aureococcus anophagefferens. Aquatic Microbial Ecology, 2007, 47, 25-36.	0.9	36
165	Responses of heterotrophic bacteria to solar irradiance in the eastern Pacific Ocean. Aquatic Microbial Ecology, 2007, 47, 153-162.	0.9	18
166	Assessment of Phosphorus-microbe Interactions in Lake Ontario by Multiple Techniques. Journal of Great Lakes Research, 2006, 32, 455-470.	0.8	11
167	Seasonal Hypoxia and the Genetic Diversity of Prokaryote Populations in the Central Basin Hypolimnion of Lake Erie: Evidence for Abundant Cyanobacteria and Photosynthesis. Journal of Great Lakes Research, 2006, 32, 657.	0.8	49
168	Marine and Freshwater Cyanophages in a Laurentian Great Lake: Evidence from Infectivity Assays and Molecular Analyses of g20 Genes. Applied and Environmental Microbiology, 2006, 72, 4957-4963.	1.4	76
169	Toxic Microcystis is Widespread in Lake Erie: PCR Detection of Toxin Genes and Molecular Characterization of Associated Cyanobacterial Communities. Microbial Ecology, 2006, 51, 154-165.	1.4	115
170	Diversity of Microcystin-Producing Cyanobacteria in Spatially Isolated Regions of Lake Erie. Applied and Environmental Microbiology, 2006, 72, 5083-5085.	1.4	89
171	Phytoplankton community structure changes following simulated upwelled iron inputs in the Peru upwelling region. Aquatic Microbial Ecology, 2005, 38, 269-282.	0.9	38
172	Pelagic Bird Survey on Lake Ontario Following Hurricane Isabel, September 2003: Observations and Remarks on Methodology. Journal of Great Lakes Research, 2005, 31, 219-226.	0.8	3
173	The Lake Ontario Great Lakes Science Practicum: A Model for Training Limnology Students on How to Conduct Shipboard Research in the Great Lakes. Journal of Great Lakes Research, 2005, 31, 236-242.	0.8	2
174	Field Investigations of Trace Metal Effects on Lake Erie Phytoplankton Productivity. Journal of Great Lakes Research, 2005, 31, 168-179.	0.8	26
175	Determination of Bioavailable Fe in Lake Erie Using a Luminescent Cyanobacterial Bioreporter. Journal of Great Lakes Research, 2005, 31, 180-194.	0.8	15
176	Quantification of ToxicMicrocystisspp. during the 2003 and 2004 Blooms in Western Lake Erie using Quantitative Real-Time PCR. Environmental Science & Technology, 2005, 39, 4198-4205.	4.6	324
177	Tracking changes in bioavailable Fe within high-nitrate low-chlorophyll oceanic waters: A first estimate using a heterotrophic bacterial bioreporter. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	1.9	19
178	Impact of phytoplankton on the biogeochemical cycling of iron in subantarctic waters southeast of New Zealand during FeCycle. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	1.9	34
179	Spinning the "Ferrous Wheelâ€ŧ The importance of the microbial community in an iron budget during the FeCycle experiment. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	1.9	128
180	FeCycle: Attempting an iron biogeochemical budget from a mesoscale SF6tracer experiment in unperturbed low iron waters. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	1.9	114

#	Article	IF	CITATIONS
181	Virus and siderophore-mediated transfer of available Fe between heterotrophic bacteria: characterization using an Fe-specific bioreporter. Aquatic Microbial Ecology, 2005, 41, 233-245.	0.9	33
182	Viruses as potential regulators of regional brown tide blooms caused by the alga,Aureococcus anophagefferens. Estuaries and Coasts, 2004, 27, 112-119.	1.7	74
183	Consideration of the bioavailability of iron in the North American Great Lakes: Development of novel approaches toward understanding iron biogeochemistry. Aquatic Ecosystem Health and Management, 2004, 7, 475-490.	0.3	23
184	Ecology of phytoplankton communities dominated by Aureococcus anophagefferens: the role of viruses, nutrients, and microzooplankton grazing. Harmful Algae, 2004, 3, 471-483.	2.2	43
185	Microbial Distributions and the Impact of Phosphorus on Bacterial Activity in Lake Erie. Journal of Great Lakes Research, 2004, 30, 166-183.	0.8	52
186	Viral release of iron and its bioavailability to marine plankton. Limnology and Oceanography, 2004, 49, 1734-1741.	1.6	191
187	Phytoplankton community response to a manipulation of bioavailable iron in HNLC waters of the subtropical Pacific Ocean. Aquatic Microbial Ecology, 2004, 35, 79-91.	0.9	63
188	Characterization and field trials of a bioluminescent bacterial reporter of iron bioavailability. Marine Chemistry, 2003, 83, 31-46.	0.9	39
189	PHYSIOLOGICAL CHARACTERIZATION OF ASYNECHOCOCCUSSP. (CYANOPHYCEAE) STRAIN PCC 7942 IRON-DEPENDENT BIOREPORTER FOR FRESHWATER ENVIRONMENTS1. Journal of Phycology, 2003, 39, 64-73.	1.0	34
190	Toxic cyanobacteria: the evolving molecular toolbox. Frontiers in Ecology and the Environment, 2003, 1, 359-366.	1.9	77
191	Bioavailability of iron to <i>Trichodesmium</i> colonies in the western subtropical Atlantic Ocean. Limnology and Oceanography, 2003, 48, 2250-2255.	1.6	43
192	UV radiation induced DNA damage in marine viruses along a latitudinal gradient in the southeastern Pacific Ocean. Aquatic Microbial Ecology, 2003, 31, 1-8.	0.9	54
193	Effect of phosphorus amendments on present day plankton communities in pelagic Lake Erie. Aquatic Microbial Ecology, 2003, 32, 275-285.	0.9	54
194	Estimation of Biologically Damaging UV Levels in Marine Surface Waters with DNA and Viral Dosimeters¶. Photochemistry and Photobiology, 2002, 76, 268.	1.3	35
195	Phylogenetic Diversity of Marine Cyanophage Isolates and Natural Virus Communities as Revealed by Sequences of Viral Capsid Assembly Protein Gene g20. Applied and Environmental Microbiology, 2002, 68, 1576-1584.	1.4	146
196	A Dilution Technique For The Direct Measurement Of Viral Production: A Comparison In Stratified And Tidally Mixed Coastal Waters. Microbial Ecology, 2002, 43, 168-173.	1.4	205
197	UV radiation effects on heterotrophic bacterioplankton and viruses in marine ecosystems. , 2000, , 206-236.		45
198	Bacterial carbon production in Lake Erie is influenced by viruses and solar radiation. Canadian Journal of Fisheries and Aquatic Sciences, 2000, 57, 317-326.	0.7	50

#	Article	IF	CITATIONS
199	Viruses and Nutrient Cycles in the Sea. BioScience, 1999, 49, 781-788.	2.2	996
200	Sunlight-induced DNA damage and resistance in natural viral communities. Aquatic Microbial Ecology, 1999, 17, 111-120.	0.9	49
201	The role of sunlight in the removal and repair of viruses in the sea. Limnology and Oceanography, 1998, 43, 586-592.	1.6	152
202	Evidence for the importance of catechol-type siderophores in the iron-limited growth of a cyanobacterium. Limnology and Oceanography, 1998, 43, 992-997.	1.6	28
203	Measurements of DNA damage and photoreactivation imply that most viruses in marine surface waters are infective. Aquatic Microbial Ecology, 1998, 14, 215-222.	0.9	62
204	Growth, iron requirements, and siderophore production in ironâ€limited Synechococcus PCC 72. Limnology and Oceanography, 1996, 41, 89-97.	1.6	84
205	PHYSIOLOGICAL PROFILES OF SYNECHOCOCCUS (CYANOPHYCEAE) IN IRON-LIMITING CONTINUOUS CULTURES1. Journal of Phycology, 1995, 31, 79-85.	1.0	32
206	Voltammetric estimation of iron(III) thermodynamic stability constants for catecholate siderophores isolated from marine bacteria and cyanobacteria. Marine Chemistry, 1995, 50, 179-188.	0.9	78
207	Physiological changes in the coastal marine cyanobacterium Synechococcus sp. PCC 7002 exposed to low ferric ion levels. Marine Chemistry, 1995, 50, 207-217.	0.9	35
208	Alterations in cell pigmentation, protein expression, and photosynthetic capacity of the cyanobacterium Oscillatoria tenuis grown under low iron conditions. Canadian Journal of Microbiology, 1995, 41, 1117-1123.	0.8	11
209	Effects of vitamin B12 concentration on chemostat cultured Synechococcus sp. strain PCC 7002. Canadian Journal of Microbiology, 1995, 41, 145-151.	0.8	15
210	Ecology of iron-limited cyanobacteria: a review of physiological responses and implications for aquatic systems. Aquatic Microbial Ecology, 1995, 9, 295-303.	0.9	119
211	Ironâ€limited growth of cyanobacteria: Multiple siderophore production is a common response. Limnology and Oceanography, 1994, 39, 1979-1984.	1.6	231
212	Determining rates of virus production in aquatic systems by the virus reduction approach. , 0, , 1-8.		32
213	The construction and analysis of marker gene libraries. , 0, , 82-91.		8
214	Closed, Circular Genome Sequence of Aureococcus anophagefferens Virus, a Lytic Virus of a Brown Tide-Forming Alga. Microbiology Resource Announcements, 0, , .	0.3	2