List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6143767/publications.pdf Version: 2024-02-01

		9234	11899
344	21,138	74	134
papers	citations	h-index	g-index
352	352	352	19816
all docs	docs citations	times ranked	citing authors

FIAZED P EDELMAN

#	Article	IF	CITATIONS
1	Role of Endothelial Shear Stress in the Natural History of Coronary Atherosclerosis and Vascular Remodeling. Journal of the American College of Cardiology, 2007, 49, 2379-2393.	1.2	1,211
2	Antisense c-myb oligonucleotides inhibit intimal arterial smooth muscle cell accumulation in vivo. Nature, 1992, 359, 67-70.	13.7	773
3	Stent Thrombogenicity Early in High-Risk Interventional Settings Is Driven by Stent Design and Deployment and Protected by Polymer-Drug Coatings. Circulation, 2011, 123, 1400-1409.	1.6	688
4	Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels. Nature, 1997, 387, 414-417.	13.7	660
5	Endovascular Stent Design Dictates Experimental Restenosis and Thrombosis. Circulation, 1995, 91, 2995-3001.	1.6	448
6	Local Perivascular Delivery of Basic Fibroblast Growth Factor in Patients Undergoing Coronary Bypass Surgery. Circulation, 1999, 100, 1865-1871.	1.6	398
7	Physiological Transport Forces Govern Drug Distribution for Stent-Based Delivery. Circulation, 2001, 104, 600-605.	1.6	382
8	Prediction of the Localization of High-Risk Coronary Atherosclerotic Plaques on the Basis of Low Endothelial Shear Stress. Circulation, 2008, 117, 993-1002.	1.6	346
9	Controlled and modulated release of basic fibroblast growth factor. Biomaterials, 1991, 12, 619-626.	5.7	344
10	Vascular Tissue Engineering: Progress, Challenges, and Clinical Promise. Cell Stem Cell, 2018, 22, 340-354.	5.2	320
11	Kruppel-like Factor 4 Regulates Endothelial Inflammation. Journal of Biological Chemistry, 2007, 282, 13769-13779.	1.6	316
12	In vivo and in vitro tracking of erosion in biodegradable materials using non-invasive fluorescence imaging. Nature Materials, 2011, 10, 890-890.	13.3	313
13	Drug-Eluting Stents in Preclinical Studies. Circulation, 2002, 106, 1867-1873.	1.6	271
14	Dabigatran and Rivaroxaban Use in Atrial Fibrillation Patients on Hemodialysis. Circulation, 2015, 131, 972-979.	1.6	271
15	Increased Thrombosis After Arterial Injury in Human C-Reactive Protein–Transgenic Mice. Circulation, 2003, 108, 512-515.	1.6	268
16	Neointimal thickening after stent delivery of paclitaxel: change in composition and arrest of growth over six months. Journal of the American College of Cardiology, 2000, 36, 2325-2332.	1.2	265
17	Arterial Paclitaxel Distribution and Deposition. Circulation Research, 2000, 86, 879-884.	2.0	237
18	Kinetics of basic fibroblast growth factor binding to its receptor and heparan sulfate proteoglycan: a mechanism for cooperativity. Biochemistry, 1992, 31, 8876-8883.	1.2	233

#	Article	IF	CITATIONS
19	Single-Cell Analysis of the Normal Mouse Aorta Reveals Functionally Distinct Endothelial Cell Populations. Circulation, 2019, 140, 147-163.	1.6	231
20	Pathobiologic Responses to Stenting 11Supported in part by grants from the National Institutes of Health (GM/HL49039 and HL03104), the Burroughs Wellcome Fund for Experimental Therapeutics, Durham, North Carolina, and the Whitaker Foundation, Rosslyn, Virginia American Journal of Cardiology, 1998, 81, 4E-6E.	0.7	222
21	Specific binding to intracellular proteins determines arterial transport properties for rapamycin and paclitaxel. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9463-9467.	3.3	221
22	Regulation by Adrenocorticotropic Hormone of the in Vivo Expression of Scavenger Receptor Class B Type I (SR-BI), a High Density Lipoprotein Receptor, in Steroidogenic Cells of the Murine Adrenal Gland. Journal of Biological Chemistry, 1996, 271, 33545-33549.	1.6	215
23	Therapeutic Angiogenesis With Basic Fibroblast Growth Factor: Technique and Early Results. Annals of Thoracic Surgery, 1998, 65, 1540-1544.	0.7	213
24	Decreased neointimal formation in Mac-1–/– mice reveals a role for inflammation in vascular repair after angioplasty. Journal of Clinical Investigation, 2000, 105, 293-300.	3.9	213
25	Stent and Artery Geometry Determine Intimal Thickening Independent of Arterial Injury. Circulation, 2000, 101, 812-818.	1.6	211
26	Balloon-Artery Interactions During Stent Placement. Circulation Research, 1999, 84, 378-383.	2.0	206
27	Efficacy of a Device to Narrow the Coronary Sinus in Refractory Angina. New England Journal of Medicine, 2015, 372, 519-527.	13.9	205
28	Dual Targeted Immunotherapy via In Vivo Delivery of Biohybrid RNAiâ€Peptide Nanoparticles to Tumorâ€Associated Macrophages and Cancer Cells. Advanced Functional Materials, 2015, 25, 4183-4194.	7.8	196
29	Strut Position, Blood Flow, and Drug Deposition. Circulation, 2005, 111, 2958-2965.	1.6	181
30	Expert recommendations on the assessment of wall shear stress in human coronary arteries: existing methodologies, technical considerations, and clinical applications. European Heart Journal, 2019, 40, 3421-3433.	1.0	178
31	Endogenous Cell Seeding. Circulation, 1996, 94, 2909-2914.	1.6	176
32	Natural History of Experimental Coronary Atherosclerosis and Vascular Remodeling in Relation to Endothelial Shear Stress. Circulation, 2010, 121, 2092-2101.	1.6	168
33	Monocyte Recruitment and Neointimal Hyperplasia in Rabbits. Arteriosclerosis, Thrombosis, and Vascular Biology, 1996, 16, 1312-1318.	1.1	162
34	Enhanced T-Helper-1 Lymphocyte Activation Patterns in Acute Coronary Syndromes. Journal of the American College of Cardiology, 2005, 45, 1939-1945.	1.2	157
35	Tissue Engineering Therapy for Cardiovascular Disease. Circulation Research, 2003, 92, 1068-1078.	2.0	152
36	Intravascular Ultrasound Guidance to Minimize the Use of Iodine Contrast in Percutaneous Coronary Intervention. JACC: Cardiovascular Interventions, 2014, 7, 1287-1293.	1.1	152

#	Article	IF	CITATIONS
37	Stromal Endothelial Cells Directly Influence Cancer Progression. Science Translational Medicine, 2011, 3, 66ra5.	5.8	145
38	Augmented Expression and Activity of Extracellular Matrix-Degrading Enzymes in Regions of Low Endothelial Shear Stress Colocalize With Coronary Atheromata With Thin Fibrous Caps in Pigs. Circulation, 2011, 123, 621-630.	1.6	142
39	Coronary Artery Disease and Diabetes Mellitus. Cardiology Clinics, 2014, 32, 439-455.	0.9	135
40	miRNAs in atherosclerotic plaque initiation, progression, and rupture. Trends in Molecular Medicine, 2015, 21, 307-318.	3.5	134
41	Cardiology Is Flow. Circulation, 2006, 113, 2679-2682.	1.6	129
42	Neutrophil, Not Macrophage, Infiltration Precedes Neointimal Thickening in Balloon-Injured Arteries. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 2553-2558.	1.1	126
43	Mortality and Paclitaxel-Coated Devices. Circulation, 2020, 141, 1859-1869.	1.6	122
44	Thrombosis Modulates Arterial Drug Distribution for Drug-Eluting Stents. Circulation, 2005, 111, 1619-1626.	1.6	120
45	Antisense Oligonucleotide Inhibition of PDGFR-β Receptor Subunit Expression Directs Suppression of Intimal Thickening. Circulation, 1997, 95, 669-676.	1.6	116
46	Uremic Serum and Solutes Increase Post–Vascular Interventional Thrombotic Risk Through Altered Stability of Smooth Muscle Cell Tissue Factor. Circulation, 2013, 127, 365-376.	1.6	113
47	Gold-Coated NIR Stents in Porcine Coronary Arteries. Circulation, 2001, 103, 429-434.	1.6	112
48	Innervation Patterns May Limit Response to Endovascular Renal Denervation. Journal of the American College of Cardiology, 2014, 64, 1079-1087.	1.2	110
49	Systemic Inflammation Induced by Lipopolysaccharide Increases Neointimal Formation After Balloon and Stent Injury in Rabbits. Circulation, 2002, 105, 2917-2922.	1.6	108
50	Arterial Ultrastructure Influences Transport of Locally Delivered Drugs. Circulation Research, 2002, 90, 826-832.	2.0	106
51	The role of low endothelial shear stress in the conversion of atherosclerotic lesions from stable to unstable plaque. Current Opinion in Cardiology, 2009, 24, 580-590.	0.8	106
52	Aldehydeâ€Amine Chemistry Enables Modulated Biosealants with Tissueâ€Specific Adhesion. Advanced Materials, 2009, 21, 3399-3403.	11.1	104
53	Stent elution rate determines drug deposition and receptor-mediated effects. Journal of Controlled Release, 2012, 161, 918-926.	4.8	103
54	Transdermal Delivery of Heparin by Skin Electroporation. Nature Biotechnology, 1995, 13, 1205-1209.	9.4	102

#	Article	IF	CITATIONS
55	Intravascular drug release kinetics dictate arterial drug deposition, retention, and distribution. Journal of Controlled Release, 2007, 123, 100-108.	4.8	102
56	Luminal flow patterns dictate arterial drug deposition in stent-based delivery. Journal of Controlled Release, 2009, 133, 24-30.	4.8	102
57	Carrier proteins determine local pharmacokinetics and arterial distribution of paclitaxel. Journal of Pharmaceutical Sciences, 2001, 90, 1324-1335.	1.6	100
58	Liposomal Alendronate Inhibits Systemic Innate Immunity and Reduces In-Stent Neointimal Hyperplasia in Rabbits. Circulation, 2003, 108, 2798-2804.	1.6	100
59	Vascular Tissue Engineering. Circulation Research, 1999, 85, 1115-1117.	2.0	95
60	Cellular Response to Transforming Growth Factor-β1 and Basic Fibroblast Growth Factor Depends on Release Kinetics and Extracellular Matrix Interactions. Journal of Biological Chemistry, 1996, 271, 29822-29829.	1.6	94
61	Dysfunctional endothelial cells directly stimulate cancer inflammation and metastasis. International Journal of Cancer, 2013, 133, 1334-1344.	2.3	94
62	c- <i>myc</i> in Vasculoproliferative Disease. Circulation Research, 1995, 76, 176-182.	2.0	90
63	Effects of amide and amine plasma-treated ePTFE vascular grafts on endothelial cell lining in an artificial circulatory system. , 1998, 42, 188-198.		89
64	Syndecan-4 proteoliposomes enhance fibroblast growth factor-2 (FGF-2)–induced proliferation, migration, and neovascularization of ischemic muscle. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1679-1684.	3.3	89
65	The Aryl Hydrocarbon Receptor is a Critical Regulator of Tissue Factor Stability and an Antithrombotic Target in Uremia. Journal of the American Society of Nephrology: JASN, 2016, 27, 189-201.	3.0	88
66	The total quasi-steady-state approximation is valid for reversible enzyme kinetics. Journal of Theoretical Biology, 2004, 226, 303-313.	0.8	87
67	Calcified plaque modification alters local drug delivery in the treatment of peripheral atherosclerosis. Journal of Controlled Release, 2017, 264, 203-210.	4.8	87
68	Hoop Dreams. Circulation, 1996, 94, 1199-1202.	1.6	87
69	Pulsatility and high shear stress deteriorate barrier phenotype in brain microvascular endothelium. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2614-2625.	2.4	85
70	Biomechanical Modeling to Improve Coronary Artery Bifurcation Stenting. JACC: Cardiovascular Interventions, 2015, 8, 1281-1296.	1.1	84
71	Thin-Capped Atheromata With Reduced Collagen Content in Pigs Develop in Coronary Arterial Regions Exposed to Persistently Low Endothelial Shear Stress. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1494-1504.	1.1	81
72	In vivo and in vitro evaluation of a biodegradable magnesium vascular stent designed by shape optimization strategy. Biomaterials, 2019, 221, 119414.	5.7	81

#	Article	IF	CITATIONS
73	Endothelial Implants Inhibit Intimal Hyperplasia After Porcine Angioplasty. Circulation Research, 1999, 84, 384-391.	2.0	80
74	Equilibrium and non-equilibrium phase transitions in copolymer polyelectrolyte hydrogels. Journal of Chemical Physics, 1997, 107, 1645-1654.	1.2	78
75	Perivascular graft heparin delivery using biodegradable polymer wraps. Biomaterials, 2000, 21, 2279-2286.	5.7	76
76	Preclinical Evaluation of Drug-Eluting Stents for Peripheral Applications. Circulation, 2004, 110, 2498-2505.	1.6	74
77	Optimizing Glutaraldehyde-Fixed Tissue Heart Valves with Chondroitin Sulfate Hydrogel for Endothelialization and Shielding against Deterioration. Biomacromolecules, 2018, 19, 1234-1244.	2.6	74
78	Endothelial Cells Provide Feedback Control for Vascular Remodeling Through a Mechanosensitive Autocrine TGF-1 ² Signaling Pathway. Circulation Research, 2008, 103, 289-297.	2.0	73
79	Lesion complexity determines arterial drug distribution after local drug delivery. Journal of Controlled Release, 2010, 142, 332-338.	4.8	71
80	Impact of transport and drug properties on the local pharmacology of drug-eluting stents. International Journal of Cardiovascular Interventions, 2003, 5, 7-12.	0.5	69
81	Hydrogel Nanocomposites with Independently Tunable Rheology and Mechanics. ACS Nano, 2017, 11, 2598-2610.	7.3	69
82	Leukocyte recruitment and expression of chemokines following different forms of vascular injury. Vascular Medicine, 2003, 8, 1-7.	0.8	68
83	Revascularization for coronary artery disease in diabetes mellitus: Angioplasty, stents and coronary artery bypass grafting. Reviews in Endocrine and Metabolic Disorders, 2010, 11, 75-86.	2.6	68
84	Catheter-Based Renal Denervation Is NoÂSimple Matter. Journal of the American College of Cardiology, 2014, 64, 644-646.	1.2	68
85	Endothelial cell delivery for cardiovascular therapy. Advanced Drug Delivery Reviews, 2000, 42, 139-161.	6.6	67
86	Mechanisms of Transmural Heparin Transport in the Rat Abdominal Aorta After Local Vascular Delivery. Circulation Research, 1995, 77, 1143-1150.	2.0	67
87	Monocyte-endothelial cell interactions in the regulation of vascular sprouting and liver regeneration in mouse. Journal of Hepatology, 2015, 63, 917-925.	1.8	66
88	Characterization of Star Adhesive Sealants Based On PEG/Dextran Hydrogels. Macromolecular Bioscience, 2009, 9, 754-765.	2.1	65
89	Mechanisms of Tissue Uptake and Retention in Zotarolimus-Coated Balloon Therapy. Circulation, 2013, 127, 2047-2055.	1.6	65
90	Physical nanoscale conduit-mediated communication between tumour cells and the endothelium modulates endothelial phenotype. Nature Communications, 2015, 6, 8671.	5.8	65

#	Article	IF	CITATIONS
91	Glucose Modulates Basement Membrane Fibroblast Growth Factor-2 via Alterations in Endothelial Cell Permeability. Journal of Biological Chemistry, 2007, 282, 14635-14644.	1.6	64
92	Enhanced drug delivery capabilities from stents coated with absorbable polymer and crystalline drug. Journal of Controlled Release, 2012, 162, 561-567.	4.8	64
93	Vascular bed origin dictates flow pattern regulation of endothelial adhesion molecule expression. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H2167-H2175.	1.5	63
94	Target-responsive DNA/RNA nanomaterials for microRNA sensing and inhibition: The jack-of-all-trades in cancer nanotheranostics?. Advanced Drug Delivery Reviews, 2015, 81, 169-183.	6.6	63
95	Effect of pre-adsorbed proteins on attachment, proliferation, and function of endothelial cells. Journal of Cellular Physiology, 2002, 191, 155-161.	2.0	61
96	Embolic Protection With Filtering or Occlusion Balloons During Saphenous Vein Graft Stenting Retrieves Identical Volumes and Sizes of Particulate Debris. Circulation, 2004, 109, 1735-1740.	1.6	61
97	Viscoelastic adhesive mechanics of aldehyde-mediated soft tissue sealants. Biomaterials, 2008, 29, 4584-4591.	5.7	61
98	Regulation of dendrimer/dextran material performance by altered tissue microenvironment in inflammation and neoplasia. Science Translational Medicine, 2015, 7, 272ra11.	5.8	61
99	Perivascular Endothelial Implants Inhibit Intimal Hyperplasia in a Model of Arteriovenous Fistulae: A Safety and Efficacy Study in the Pig. Journal of Vascular Research, 2002, 39, 524-533.	0.6	60
100	Vascular Neointimal Formation and Signaling Pathway Activation in Response to Stent Injury in Insulin-Resistant and Diabetic Animals. Circulation Research, 2005, 97, 725-733.	2.0	58
101	Heparanase Regulates Thrombosis in Vascular Injury and Stent-Induced Flow Disturbance. Journal of the American College of Cardiology, 2012, 59, 1551-1560.	1.2	58
102	Tissue-engineered endothelial and epithelial implants differentially and synergistically regulate airway repair. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7046-7051.	3.3	57
103	Methodological Standardization for theÂPre-Clinical Evaluation of RenalÂSympatheticÂDenervation. JACC: Cardiovascular Interventions, 2014, 7, 1184-1193.	1.1	57
104	Arterial microanatomy determines the success of energy-based renal denervation in controlling hypertension. Science Translational Medicine, 2015, 7, 285ra65.	5.8	57
105	Luminal Flow Amplifies Stent-Based Drug Deposition in Arterial Bifurcations. PLoS ONE, 2009, 4, e8105.	1.1	54
106	Heparanase Alters Arterial Structure, Mechanics, and Repair Following Endovascular Stenting in Mice. Circulation Research, 2009, 104, 380-387.	2.0	54
107	Smooth Muscle Cells Orchestrate the Endothelial Cell Response to Flow and Injury. Circulation, 2010, 121, 2192-2199.	1.6	53
108	Regulation of heparanase expression in coronary artery disease in diabetic, hyperlipidemic swine. Atherosclerosis, 2010, 213, 436-442.	0.4	53

#	Article	IF	CITATIONS
109	Stents: Biomechanics, Biomaterials, and Insights from Computational Modeling. Annals of Biomedical Engineering, 2017, 45, 853-872.	1.3	53
110	The effect of substrate modulus on the growth and function of matrix-embedded endothelial cells. Biomaterials, 2013, 34, 677-684.	5.7	52
111	Dynamic flow alterations dictate leukocyte adhesion and response to endovascular interventions. Journal of Clinical Investigation, 2004, 113, 1607-1614.	3.9	52
112	Cells in fluidic environments are sensitive to flow frequency. Journal of Cellular Physiology, 2005, 204, 329-335.	2.0	50
113	Thrombus causes fluctuations in arterial drug delivery from intravascular stents. Journal of Controlled Release, 2008, 131, 173-180.	4.8	50
114	Extent of flow recirculation governs expression of atherosclerotic and thrombotic biomarkers in arterial bifurcations. Cardiovascular Research, 2014, 103, 37-46.	1.8	50
115	Adventitial endothelial implants reduce matrix metalloproteinase-2 expression and increase luminal diameter in porcine arteriovenous grafts. Journal of Vascular Surgery, 2007, 46, 548-556.e2.	0.6	48
116	Endothelial Implants Provide Long-Term Control of Vascular Repair in a Porcine Model of Arterial Injury. Journal of Surgical Research, 2001, 99, 228-234.	0.8	47
117	Cellular bridges. Communicative and Integrative Biology, 2010, 3, 215-220.	0.6	46
118	Strain-induced accelerated asymmetric spatial degradation of polymeric vascular scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2640-2645.	3.3	46
119	Risk stratification of individual coronary lesions using local endothelial shear stress: a new paradigm for managing coronary artery disease. Current Opinion in Cardiology, 2007, 22, 552-564.	0.8	45
120	Intravascular fibrin molecular imaging improves the detection of unhealed stents assessed by optical coherence tomographyin vivo. European Heart Journal, 2015, 38, ehv677.	1.0	45
121	Impact of flow pulsatility on arterial drug distribution in stent-based therapy. Journal of Controlled Release, 2013, 168, 115-124.	4.8	44
122	Stent-Versus-Stent Equivalency Trials. Circulation, 1999, 100, 896-898.	1.6	43
123	Randomized Comparison of Ridaforolimus- and Zotarolimus-Eluting Coronary Stents in Patients With Coronary Artery Disease. Circulation, 2017, 136, 1304-1314.	1.6	43
124	Polyelectrolyte hydrogel instabilities in ionic solutions. Journal of Chemical Physics, 1996, 105, 10606-10613.	1.2	42
125	Fabrication of Bioactive Surfaces by Plasma Polymerization Techniques Using a Novel Acrylate-Derived Monomer. Plasma Processes and Polymers, 2005, 2, 605-611.	1.6	41
126	Treatment with chondroitin sulfate to modulate inflammation and atherogenesis in obesity. Atherosclerosis, 2016, 245, 82-87.	0.4	41

#	Article	IF	CITATIONS
127	Graphene–Dendrimer Nanostars for Targeted Macrophage Overexpression of Metalloproteinase 9 and Hepatic Fibrosis Precision Therapy. Nano Letters, 2018, 18, 5839-5845.	4.5	40
128	Transapical Mitral Implantation of the Tiara Bioprosthesis. JACC: Cardiovascular Interventions, 2014, 7, 154-162.	1.1	39
129	C-reactive protein promotes monocyte?platelet aggregation: an additional link to the inflammatory-thrombotic intricacy. European Journal of Haematology, 2007, 78, 246-252.	1.1	38
130	Targeting STUB1–tissue factor axis normalizes hyperthrombotic uremic phenotype without increasing bleeding risk. Science Translational Medicine, 2017, 9, .	5.8	38
131	Regulation of Endothelial Cell Proliferation by Primary Monocytes. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 97-104.	1.1	37
132	The c-Cbl Ubiquitin Ligase Regulates Nuclear β-Catenin and Angiogenesis by Its Tyrosine Phosphorylation Mediated through the Wnt Signaling Pathway. Journal of Biological Chemistry, 2015, 290, 12537-12546.	1.6	37
133	Tuning adhesion failure strength for tissue-specific applications. Acta Biomaterialia, 2011, 7, 67-74.	4.1	35
134	The role of scaffold microarchitecture in engineering endothelial cell immunomodulation. Biomaterials, 2012, 33, 7019-7027.	5.7	35
135	A tunable delivery platform to provide local chemotherapy for pancreatic ductal adenocarcinoma. Biomaterials, 2016, 93, 71-82.	5.7	35
136	A geometrically adaptable heart valve replacement. Science Translational Medicine, 2020, 12, .	5.8	35
137	Tenofovir prodrugs potently inhibit Epstein–Barr virus lytic DNA replication by targeting the viral DNA polymerase. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12368-12374.	3.3	34
138	Structural Mechanics Predictions Relating to Clinical Coronary Stent Fracture in a 5ÂYear Period in FDA MAUDE Database. Annals of Biomedical Engineering, 2016, 44, 391-403.	1.3	33
139	Matrix Embedding Alters the Immune Response Against Endothelial Cells In Vitro and In Vivo. Circulation, 2005, 112, 189-95.	1.6	33
140	Natural Tissue Microenvironmental Conditions Modulate Adhesive Material Performance. Langmuir, 2012, 28, 15402-15409.	1.6	32
141	How Do We Prevent the Vulnerable Atherosclerotic Plaque From Rupturing? Insights From In Vivo Assessments of Plaque, Vascular Remodeling, and Local Endothelial Shear Stress. Journal of Cardiovascular Pharmacology and Therapeutics, 2015, 20, 261-275.	1.0	32
142	Drug Clearance and Arterial Uptake After Local Perivascular Delivery to the Rat Carotid Artery. Journal of the American College of Cardiology, 1997, 29, 1645-1650.	1.2	31
143	Elimination of Transcoarctation Pressure Gradients Has No Impact on Left Ventricular Function or Aortic Shear Stress After Intervention in Patients With Mild Coarctation. JACC: Cardiovascular Interventions, 2016, 9, 1953-1965.	1.1	31
144	Chondroitin Sulphate Attenuates Atherosclerosis in ApoE Knockout Mice Involving Cellular Regulation of the Inflammatory Response. Thrombosis and Haemostasis, 2018, 118, 1329-1339.	1.8	31

#	Article	IF	CITATIONS
145	Angiogenic potential of perivascularly delivered aFGF in a porcine model of chronic myocardial ischemia. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 274, H930-H936.	1.5	30
146	Transgenic expression of human C-reactive protein suppresses endothelial nitric oxide synthase expression and bioactivity after vascular injury. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H489-H495.	1.5	30
147	Attenuation of inflammation and expansive remodeling by Valsartan alone or in combination with Simvastatin in high-risk coronary atherosclerotic plaques. Atherosclerosis, 2009, 203, 387-394.	0.4	30
148	Augmentation of postswelling surgical sealant potential of adhesive hydrogels. Journal of Biomedical Materials Research - Part A, 2010, 95A, 1159-1169.	2.1	30
149	Primary Monocytes Regulate Endothelial Cell Survival Through Secretion of Angiopoietin-1 and Activation of Endothelial Tie2. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 870-875.	1.1	30
150	Taking paclitaxel coated balloons to a higher level: Predicting coating dissolution kinetics, tissue retention and dosing dynamics. Journal of Controlled Release, 2019, 310, 94-102.	4.8	30
151	Phosphorylation-induced Conformational Changes in a Mitogen-activated Protein Kinase Substrate. Journal of Biological Chemistry, 2002, 277, 47653-47661.	1.6	29
152	Proangiogenic stimulation of bone marrow endothelium engages mTOR and is inhibited by simultaneous blockade of mTOR and NF-I®B. Blood, 2006, 107, 285-292.	0.6	29
153	Synergistic effect of local endothelial shear stress and systemic hypercholesterolemia on coronary atherosclerotic plaque progression and composition in pigs. International Journal of Cardiology, 2013, 169, 394-401.	0.8	29
154	False lumen pressure estimation in type B aortic dissection using 4D flow cardiovascular magnetic resonance: comparisons with aortic growth. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 51.	1.6	29
155	Assessment of the Angiogenic Potential of 2-Deoxy-D-Ribose Using a Novel in vitro 3D Dynamic Model in Comparison With Established in vitro Assays. Frontiers in Bioengineering and Biotechnology, 2019, 7, 451.	2.0	28
156	Oral Heparin Prevents Neointimal Hyperplasia After Arterial Injury. Circulation, 2001, 104, 3121-3124.	1.6	27
157	Drug deposition in coronary arteries with overlapping drug-eluting stents. Journal of Controlled Release, 2016, 238, 1-9.	4.8	27
158	Local and systemic drug competition in drug-eluting stent tissue deposition properties. Journal of Controlled Release, 2005, 109, 236-243.	4.8	26
159	The role of aortic compliance in determination of coarctation severity: Lumped parameter modeling, in vitro study and clinical evaluation. Journal of Biomechanics, 2015, 48, 4229-4237.	0.9	26
160	Effect of working environment and procedural strategies on mechanical performance of bioresorbable vascular scaffolds. Acta Biomaterialia, 2018, 82, 34-43.	4.1	26
161	Ventricular stroke work and vascular impedance refine the characterization of patients with aortic stenosis. Science Translational Medicine, 2019, 11, .	5.8	26
162	Mixed Valvular Disease Following Transcatheter Aortic Valve Replacement: Quantification and Systematic Differentiation Using Clinical Measurements and Imageâ€Based Patientâ€Specific In Silico Modeling. Journal of the American Heart Association, 2020, 9, e015063.	1.6	26

#	Article	IF	CITATIONS
163	Arterial heparin deposition: role of diffusion, convection, and extravascular space. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 275, H2236-H2242.	1.5	25
164	A Structural Model that Explains the Effects of Hyperglycemia on Collagenolysis. Biophysical Journal, 2003, 85, 2198-2204.	0.2	25
165	The Evolution of Endothelial Regulatory Paradigms in Cancer Biology and Vascular Repair. Cancer Research, 2011, 71, 7339-7344.	0.4	25
166	Targeted anti-inflammatory systemic therapy for restenosis: The Biorest Liposomal Alendronate with Stenting sTudy (BLAST)—a double blind, randomized clinical trial. American Heart Journal, 2013, 165, 234-240.e1.	1.2	25
167	Twenty-Four–Hour Ex Vivo Perfusion with Acellular Solution Enables Successful Replantation of Porcine Forelimbs. Plastic and Reconstructive Surgery, 2019, 144, 608e-618e.	0.7	25
168	Measurement of drug distribution in vascular tissue using quantitative fluorescence microscopy. Journal of Pharmaceutical Sciences, 1999, 88, 822-829.	1.6	24
169	Endothelial heparan sulfate is necessary but not sufficient for control of vascular smooth muscle cell growth. , 2000, 184, 93-100.		24
170	Local drug delivery: an emerging approach in the treatment of restenosis. Vascular Medicine, 2000, 5, 97-102.	0.8	24
171	On the validity of the quasi-steady state approximation of bimolecular reactions in solution. Journal of Theoretical Biology, 2005, 233, 343-350.	0.8	24
172	The Impact of Blood Rheology on Drug Transport in Stented Arteries: Steady Simulations. PLoS ONE, 2015, 10, e0128178.	1.1	24
173	Endothelial cell-matrix interactions determine maturation of dendritic cells. European Journal of Immunology, 2007, 37, 1773-1784.	1.6	23
174	Tubular Bridges for Bronchial Epithelial Cell Migration and Communication. PLoS ONE, 2010, 5, e8930.	1.1	23
175	Predicting response to endovascular therapies: Dissecting the roles of local lesion complexity, systemic comorbidity, and clinical uncertainty. Journal of Biomechanics, 2014, 47, 908-921.	0.9	23
176	Matrix adherence of endothelial cells attenuates immune reactivity: induction of hyporesponsiveness in allo―and xenogeneic models. FASEB Journal, 2007, 21, 1515-1526.	0.2	22
177	Amyloid beta toxicity dependent upon endothelial cell state. Neuroscience Letters, 2008, 441, 319-322.	1.0	22
178	Could antiretrovirals be treating EBV in MS? A case report. Multiple Sclerosis and Related Disorders, 2018, 22, 19-21.	0.9	22
179	Procedural and Anatomical Determinants of Multielectrode Renal Denervation Efficacy. Hypertension, 2019, 74, 546-554.	1.3	22
180	A Mechanical Approach for Smooth Surface Fitting to Delineate Vessel Walls in Optical Coherence Tomography Images. IEEE Transactions on Medical Imaging, 2019, 38, 1384-1397.	5.4	22

#	Article	IF	CITATIONS
181	Analysis of compartmental models of ligand-induced endocytosis. Journal of Theoretical Biology, 2004, 229, 127-138.	0.8	21
182	Environmental influences on endovascular stent platelet reactivity: Anin vitro comparison of stainless steel and gold surfaces. Journal of Biomedical Materials Research Part B, 2004, 70A, 186-193.	3.0	21
183	Pheochromocytoma-Induced Cardiomyopathy is Modulated by the Synergistic Effects of Cell-Secreted Factors. Circulation: Heart Failure, 2009, 2, 121-128.	1.6	21
184	Pushing Drug-Eluting Stents Into Uncharted Territory. Circulation, 2006, 113, 2262-2265.	1.6	20
185	The effect of three-dimensional matrix-embedding of endothelial cells on the humoral and cellular immune response. Seminars in Immunology, 2008, 20, 117-122.	2.7	20
186	Optimized Computer-Aided Segmentation and Three-Dimensional Reconstruction Using Intracoronary Optical Coherence Tomography. IEEE Journal of Biomedical and Health Informatics, 2018, 22, 1168-1176.	3.9	20
187	A Domain Enriched Deep Learning Approach to Classify Atherosclerosis Using Intravascular Ultrasound Imaging. IEEE Journal on Selected Topics in Signal Processing, 2020, 14, 1210-1220.	7.3	20
188	Endothelial immunogenicity – A matter of matrix microarchitecture. Thrombosis and Haemostasis, 2007, 98, 278-282.	1.8	20
189	Rat Arterial Wall Retains Myointimal Hyperplastic Potential Long After Arterial Injury. Circulation, 1997, 96, 1291-1298.	1.6	20
190	Cell-Matrix Contact Prevents Recognition and Damage of Endothelial Cells in States of Heightened Immunity. Circulation, 2006, 114, I-233-I-238.	1.6	19
191	Assessment of Material By-Product Fate from Bioresorbable Vascular Scaffolds. Annals of Biomedical Engineering, 2012, 40, 955-965.	1.3	19
192	Impact of concomitant vasoactive treatment and mechanical left ventricular unloading in a porcine model of profound cardiogenic shock. Critical Care, 2020, 24, 95.	2.5	19
193	A Computational Fluid Dynamics Study of the Extracorporeal Membrane Oxygenation-Failing Heart Circulation. ASAIO Journal, 2021, 67, 276-283.	0.9	19
194	A deep learning approach to classify atherosclerosis using intracoronary optical coherence tomography. , 2019, , .		19
195	Drug delivery models transported to a new level. Nature Biotechnology, 1998, 16, 136-137.	9.4	18
196	Paclitaxel Drug-Coated Balloon Angioplasty Suppresses Progression and Inflammation of Experimental Atherosclerosis in Rabbits. JACC Basic To Translational Science, 2020, 5, 685-695.	1.9	18
197	Elevated fibroblast growth factorâ€2 increases tumor necrosis factorâ€Î± induced endothelial cell death in high glucose. Journal of Cellular Physiology, 2008, 217, 86-92.	2.0	17
198	High concentrations of drug in target tissues following local controlled release are utilized for both drug distribution and biologic effect: An example with epicardial inotropic drug delivery. Journal of Controlled Release, 2013, 171, 201-207.	4.8	17

#	Article	IF	CITATIONS
199	Comparison of the Absorbable Polymer Sirolimus-Eluting Stent (MiStent) to the Durable Polymer Everolimus-Eluting Stent (Xience) (from the DESSOLVE I/II and ISAR-TEST-4 Studies). American Journal of Cardiology, 2016, 117, 532-538.	0.7	17
200	Vascular Lesion–Specific Drug DeliveryÂSystems. Journal of the American College of Cardiology, 2021, 77, 2413-2431.	1.2	17
201	Polymeric endovascular strut and lumen detection algorithm for intracoronary optical coherence tomography images. Journal of Biomedical Optics, 2018, 23, 1.	1.4	17
202	Quantification of Insulin Release from Implantable Polymer-Based Delivery Systems and Augmentation of Therapeutic Effect with Simultaneous Release of Somatostatin. Journal of Pharmaceutical Sciences, 1996, 85, 1271-1275.	1.6	16
203	J Waves of Osborn Revisited. Journal of the American College of Cardiology, 2010, 55, 2287.	1.2	16
204	Enhancing physiologic simulations using supervised learning on coarse mesh solutions. Journal of the Royal Society Interface, 2015, 12, 20141073.	1.5	16
205	Coronary Artery Disease and Diabetes Mellitus. Heart Failure Clinics, 2016, 12, 117-133.	1.0	16
206	Multilayer flow modulator enhances vital organ perfusion in patients with type B aortic dissection. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1182-H1193.	1.5	16
207	Computational Cardiology. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 4-11.	3.9	16
208	Randomized trials of invasive cardiovascular interventions that include a placebo control: a systematic review and meta-analysis. European Heart Journal, 2020, 41, 2556-2569.	1.0	16
209	Case 30-2020: A 54-Year-Old Man with Sudden Cardiac Arrest. New England Journal of Medicine, 2020, 383, 1263-1275.	13.9	16
210	Non-invasive estimation of relative pressure for intracardiac flows using virtual work-energy. Medical Image Analysis, 2021, 68, 101948.	7.0	16
211	Orphan nuclear receptor COUPâ€TFII enhances myofibroblast glycolysis leading to kidney fibrosis. EMBO Reports, 2021, 22, e51169.	2.0	16
212	Constraining OCT with Knowledge of Device Design Enables High Accuracy Hemodynamic Assessment of Endovascular Implants. PLoS ONE, 2016, 11, e0149178.	1.1	16
213	Particulates from hydrophilic-coated guiding sheaths embolise to the brain. EuroIntervention, 2016, 11, 1435-1441.	1.4	16
214	Control of drug release from polymer matrices impregnated with magnetic beads —a proposed mechanism and model for enhanced release. Journal of Controlled Release, 1984, 1, 143-147.	4.8	15
215	Mechanical deformation of polymer matrix controlled release devices modulates drug release. Journal of Biomedical Materials Research Part B, 1992, 26, 1619-1631.	3.0	15
216	Modifications of Microvascular EC Surface Modulate Phototoxicity of a Porphycene anti-ICAM-1 Immunoconjugate; Therapeutic Implications. Langmuir, 2013, 29, 9734-9743.	1.6	15

#	Article	IF	CITATIONS
217	Arterial Remodeling and Endothelial Shear Stress Exhibit Significant Longitudinal Heterogeneity Along the Length of Coronary Plaques. JACC: Cardiovascular Imaging, 2016, 9, 1007-1009.	2.3	15
218	Rapamycin activates TGF receptor independently of its ligand: implications for endothelial dysfunction. Clinical Science, 2018, 132, 437-447.	1.8	15
219	Defining drug and target protein distributions after stent-based drug release: Durable versus deployable coatings. Journal of Controlled Release, 2018, 274, 102-108.	4.8	15
220	Remote Speech Analysis in the Evaluation of Hospitalized Patients With Acute Decompensated HeartÂFailure. JACC: Heart Failure, 2022, 10, 41-49.	1.9	15
221	Delivery Site of Perivascular Endothelial Cell Matrices Determines Control of Stenosis in a Porcine Femoral Stent Model. Journal of Vascular and Interventional Radiology, 2009, 20, 1617-1624.	0.2	14
222	NF-κB Activity in Endothelial Cells is Modulated by Cell Substratum Interactions and Influences Chemokine-Mediated Adhesion of Natural Killer Cells. Cell Transplantation, 2009, 18, 261-274.	1.2	14
223	Evaluation of an intramedullary bone stabilization system using a lightâ€curable monomer in sheep. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 291-299.	1.6	14
224	Effects of Low Endothelial Shear Stress After Stent Implantation on Subsequent Neointimal Hyperplasia and Clinical Outcomes in Humans. Journal of the American Heart Association, 2016, 5, .	1.6	14
225	Arterial Stiffening in Perspective: Advances in Physical and Physiological Science Over Centuries:. American Journal of Hypertension, 2016, 29, 785-791.	1.0	14
226	Sustained Efficacy and Arterial Drug Retention by a Fast Drug Eluting Cross-Linked Fatty Acid Coronary Stent Coating. Annals of Biomedical Engineering, 2016, 44, 276-286.	1.3	14
227	Balloon-based drug coating delivery to the artery wall is dictated by coating micro-morphology and angioplasty pressure gradients. Biomaterials, 2020, 260, 120337.	5.7	14
228	Low Background, Pulsatile, In Vitro Flow Circuit for Modeling Coronary Implant Thrombosis. Journal of Biomechanical Engineering, 2002, 124, 662-668.	0.6	13
229	Endosomal receptor kinetics determine the stability of intracellular growth factor signalling complexes. Biochemical Journal, 2007, 402, 537-549.	1.7	13
230	Structural biomechanics modulate intramuscular distribution of locally delivered drugs. Journal of Biomechanics, 2008, 41, 2884-2891.	0.9	13
231	Vascular Regeneration by Local Growth Factor Release Is Self-Limited by Microvascular Clearance. Circulation, 2009, 119, 2928-2935.	1.6	13
232	Monocyte activation state regulates monocyte-induced endothelial proliferation through Met signaling. Blood, 2010, 115, 3407-3412.	0.6	13
233	Anatomical and procedural determinants of catheter-based renal denervation. Cardiovascular Revascularization Medicine, 2016, 17, 474-479.	0.3	13
234	1α,25-Dihydroxyvitamin D3 Encapsulated in Nanoparticles Prevents Venous Neointimal Hyperplasia and Stenosis in Porcine Arteriovenous Fistulas. Journal of the American Society of Nephrology: JASN, 2021, 32, 866-885.	3.0	13

#	Article	IF	CITATIONS
235	Noninvasive quantification of cerebrovascular pressure changes using 4D Flow MRI. Magnetic Resonance in Medicine, 2021, 86, 3096-3110.	1.9	13
236	Endothelial immunogenicitya matter of matrix microarchitecture. Thrombosis and Haemostasis, 2007, 98, 278-82.	1.8	13
237	Controlled Release of Fibroblast Growth Factor: Activity in Cell Culture. Materials Research Society Symposia Proceedings, 1991, 252, 273.	0.1	12
238	Vascular Dilation, Tachycardia, and Increased Inotropy Occur Sequentially with Increasing Epinephrine Dose Rate, Plasma and Myocardial Concentrations, and cAMP. Heart Lung and Circulation, 2015, 24, 912-918.	0.2	12
239	Mechanical circulatory support device-heart hysteretic interaction can predict left ventricular end diastolic pressure. Science Translational Medicine, 2018, 10, .	5.8	12
240	Nickel–Titanium peripheral stents: Which is the best criterion for the multi-axial fatigue strength assessment?. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 113, 104142.	1.5	12
241	An inverse method for mechanical characterization of heterogeneous diseased arteries using intravascular imaging. Scientific Reports, 2021, 11, 22540.	1.6	12
242	Controlled Release of Heparin Reduces Neointimal Hyperplasia in Stented Rabbit Arteries: Ramifications for Local Therapy. Journal of Interventional Cardiology, 1992, 5, 195-202.	0.5	11
243	Matrix-embedded endothelial cells are protected from the uremic milieu. Nephrology Dialysis Transplantation, 2011, 26, 3858-3865.	0.4	11
244	Local epicardial inotropic drug delivery allows targeted pharmacologic intervention with preservation of myocardial loading conditions. Journal of Pharmaceutical Sciences, 2011, 100, 4993-5006.	1.6	11
245	Ultrasound-guided percutaneous delivery of tissue-engineered endothelial cells to the adventitia of stented arteries controls the response to vascular injury in a porcine model. Journal of Vascular Surgery, 2012, 56, 1078-1088.	0.6	11
246	Vascular Response to Experimental Stent Malapposition and Under-Expansion. Annals of Biomedical Engineering, 2016, 44, 2251-2260.	1.3	11
247	Anatomical and procedural determinants of ambulatory blood pressure lowering following catheter-based renal denervation using radiofrequency. Cardiovascular Revascularization Medicine, 2018, 19, 845-851.	0.3	11
248	Mechanisms of heparin transport through expanded poly(tetrafluoroethylene) vascular grafts. , 2000, 49, 112-119.		10
249	Neointimal formation is reduced after arterial injury in human crp transgenic mice. Atherosclerosis, 2008, 201, 85-91.	0.4	10
250	Intramuscular drug transport under mechanical loading: Resonance between tissue function and uptake. Journal of Controlled Release, 2009, 136, 99-109.	4.8	10
251	Use of Pressure-volume Conductance Catheters in Real-time Cardiovascular Experimentation. Heart Lung and Circulation, 2014, 23, 1059-1069.	0.2	10
252	Atherosclerotic plaque behind the stent changes after bare-metal and drug-eluting stent implantation in humans: Implications for late stent failure?. Atherosclerosis, 2016, 252, 9-14.	0.4	10

#	Article	IF	CITATIONS
253	Implantation of healthy matrix-embedded endothelial cells rescues dysfunctional endothelium and ischaemic tissue in liver engraftment. Gut, 2017, 66, 1297-1305.	6.1	10
254	From Nonclinical Research to Clinical Trials and Patient-registries: Challenges and Opportunities in Biomedical Research. Revista Espanola De Cardiologia (English Ed), 2017, 70, 1121-1133.	0.4	10
255	Fracture in drugâ€eluting stents increases focal intimal hyperplasia in the atherosclerosed rabbit iliac artery. Catheterization and Cardiovascular Interventions, 2019, 93, 278-285.	0.7	10
256	A platform for high-fidelity patient-specific structural modelling of atherosclerotic arteries: from intravascular imaging to three-dimensional stress distributions. Journal of the Royal Society Interface, 2021, 18, 20210436.	1.5	10
257	Vascular growth factor binding kinetics to the endothelial cell basement membrane, with a kinetics-based correction for substrate binding. Cytotechnology, 2009, 60, 33-44.	0.7	9
258	Biocompatibility, bone healing, and safety evaluation in rabbits with an IlluminOss bone stabilization system. Journal of Orthopaedic Research, 2017, 35, 2181-2190.	1.2	9
259	First-Generation Bioresorbable VascularÂScaffolds. Journal of the American College of Cardiology, 2017, 69, 3067-3069.	1.2	9
260	Sex differences in the outcomes of stent implantation in mini-swine model. PLoS ONE, 2018, 13, e0192004.	1.1	9
261	Activation of EphB2 and Its Ligands Promotes Vascular Smooth Muscle Cell Proliferation. Journal of Biological Chemistry, 2002, 277, 1924-1927.	1.6	8
262	Dose model for stent-based delivery of a radioactive compound for the treatment of restenosis in coronary arteries. Medical Physics, 2003, 30, 2622-2628.	1.6	8
263	Function and Mode of Regulation of Endothelial Major Histocompatibility Complex Class II. Cell Transplantation, 2009, 18, 255-260.	1.2	8
264	Quantification of thrombus formation in malapposed coronary stents deployed in vitro through imaging analysis. Journal of Biomechanics, 2018, 71, 296-301.	0.9	8
265	Simulation of Fluid-Structure Interaction in Extracorporeal Membrane Oxygenation Circulatory Support Systems. Journal of Cardiovascular Translational Research, 2021, , 1.	1.1	8
266	Clinician-Investigators as Translational Bioscientists: Shaping a Seamless Identity. Science Translational Medicine, 2012, 4, 135fs14.	5.8	7
267	Myocardial drug distribution generated from local epicardial application: Potential impact of cardiac capillary perfusion in a swine model using epinephrine. Journal of Controlled Release, 2014, 194, 257-265.	4.8	7
268	Endovascular drug-delivery and drug-elution systems. , 2021, , 595-631.		7
269	Feasibility of remote speech analysis in evaluation of dynamic fluid overload in heart failure patients undergoing haemodialysis treatment. ESC Heart Failure, 2021, 8, 2467-2472.	1.4	7
270	T-helper 2 cells are essential for modulation of vascular repair by allogeneic endothelial cells. Journal of Heart and Lung Transplantation, 2010, 29, 479-486.	0.3	6

#	Article	IF	CITATIONS
271	Optimal Control of Blood Glucose: The Diabetic Patient or the Machine?. Science Translational Medicine, 2010, 2, 27ps18.	5.8	6
272	Engineered arterial models to correlate blood flow to tissue biological response. Annals of the New York Academy of Sciences, 2012, 1254, 51-56.	1.8	6
273	Hemodynamic consequences of a multilayer flow modulator in aortic dissection. Medical and Biological Engineering and Computing, 2019, 57, 1861-1874.	1.6	6
274	Leveraging Device-Arterial Coupling to Determine Cardiac and Vascular State. IEEE Transactions on Biomedical Engineering, 2019, 66, 2800-2808.	2.5	6
275	Understanding TAVR device expansion as it relates to morphology of the bicuspid aortic valve: A simulation study. PLoS ONE, 2021, 16, e0251579.	1.1	6
276	Three dimensional reconstruction of coronary artery stents from optical coherence tomography: experimental validation and clinical feasibility. Scientific Reports, 2021, 11, 12252.	1.6	6
277	Role of CABG in the management of obstructive coronary arterial disease in patients with diabetes mellitus. Current Opinion in Pharmacology, 2012, 12, 134-141.	1.7	5
278	Estimating the internal elastic membrane cross-sectional area of coronary arteries autonomously using optical coherence tomography images. , 2017, , .		5
279	Vessel centerline reconstruction from non-isocentric and non-orthogonal paired monoplane angiographic images. International Journal of Cardiovascular Imaging, 2018, 34, 673-682.	0.7	5
280	Subendothelial matrix components influence endothelial cell apoptosis in vitro. American Journal of Physiology - Cell Physiology, 2019, 316, C210-C222.	2.1	5
281	Artificial intelligence to generate medical images: augmenting the cardiologist's visual clinical workflow. European Heart Journal Digital Health, 2021, 2, 539-544.	0.7	5
282	Tenuous Tether. New England Journal of Medicine, 2015, 373, 2199-2201.	13.9	5
283	Importance of Receptor-targeted Systems in the Battle Against Atherosclerosis. Current Pharmaceutical Design, 2013, 19, 5897-5903.	0.9	5
284	Ultra-hydrophilic stent platforms promote early vascular healing and minimise late tissue response: a potential alternative to second-generation drug-eluting stents. EuroIntervention, 2017, 12, 2148-2156.	1.4	5
285	<i>Analysis</i> : Intravascular Devices with a Higher Risk of Polymer Emboli: The Need for Particulate Generation Testing. Biomedical Instrumentation and Technology, 2020, 54, 37-43.	0.2	5
286	Accelerated Neutral Atom Beam (ANAB) Modified Poly-Ether-Ether-Ketone for Increasing <i>In Vitro</i> Bone Cell Functions and Reducing Bacteria Colonization Without Drugs or Antibiotics. Journal of Biomedical Nanotechnology, 2022, 18, 788-795.	0.5	5
287	Application of arterial hemodynamics to clinical practice: A testament to medical science in London. Artery Research, 2017, 18, 81.	0.3	4
288	Catheter-based renal denervation in hypertension. Journal of Hypertension, 2018, 36, 41-42.	0.3	4

#	Article	IF	CITATIONS
289	Osterixâ€mCherry Expression Allows for Early Bone Detection in a Calvarial Defect Model. Advanced Biology, 2019, 3, e1900184.	3.0	4
290	A decade of <i>Science Translational Medicine</i> . Science Translational Medicine, 2019, 11, .	5.8	4
291	Validation study to determine the accuracy of central blood pressure measurement using the SphygmoCor XCEL cuff device in patients with severe aortic stenosis undergoing transcatheter aortic valve replacement. Journal of Clinical Hypertension, 2021, 23, 1165-1175.	1.0	4
292	Matrixâ€Embedded Endothelial Cells Attain a Progenitor‣ike Phenotype. Advanced Biology, 2017, 1, 1700057.	3.0	4
293	Acute Stent-Induced Endothelial Denudation: Biomechanical Predictors of Vascular Injury. Frontiers in Cardiovascular Medicine, 2021, 8, 733605.	1.1	4
294	Resonance energy transfer for assessing the molecular integrity of proteins for local delivery. Biotechnology and Bioengineering, 2004, 85, 406-412.	1.7	3
295	William Heberden and reverse translation. Science Translational Medicine, 2015, 7, 287fs20.	5.8	3
296	Engagement of the medical-technology sector with society. Science Translational Medicine, 2017, 9, .	5.8	3
297	In Silico Assessment of the effects of Material on Stent Deployment. , 2017, 2017, 462-467.		3
298	Automated Segmentation of Bioresorbable Vascular Scaffold Struts in Intracoronary Optical Coherence Tomography Images. , 2017, 2017, 297-302.		3
299	3D matrixâ€embedding inhibits cycloheximideâ€mediated sensitization to TNFâ€elphaâ€induced apoptosis of human endothelial cells. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1085-1096.	1.3	3
300	Dynamic Modulation of Device-Arterial Coupling to Determine Cardiac Output and Vascular Resistance. Annals of Biomedical Engineering, 2020, 48, 2333-2342.	1.3	3
301	Effect of anatomical variation on extracorporeal membrane oxygenation circulatory support: A computational study. Computers in Biology and Medicine, 2022, 141, 105178.	3.9	3
302	Impact and implications of mixed plaque class in automated characterization of complex atherosclerotic lesions. Computerized Medical Imaging and Graphics, 2022, 97, 102051.	3.5	3
303	Accelerated neutral atom beam (ANAB) modified polyethylene for decreased wear and reduced bacteria colonization: An in vitro study. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 42, 102540.	1.7	3
304	…and surreal antisense?. Nature Medicine, 1996, 2, 131-132.	15.2	2
305	Smooth Muscle Cell Ingrowth of a Surface-Modified ePTFE Vascular Graft. Key Engineering Materials, 2005, 288-289, 367-372.	0.4	2
306	Echocardiographic Capture of Right Ventricular Wall Rupture During Inferior Wall Acute Myocardial Infarction. American Journal of Cardiology, 2009, 103, 1478-1480.	0.7	2

#	Article	IF	CITATIONS
307	Response to Letter Regarding Article, "Stent Thrombogenicity Early in High-Risk Interventional Settings Is Driven by Stent Design and Deployment and Protected by Polymer-Drug Coatings― Circulation, 2011, 124, .	1.6	2
308	Cell matrix contact modifies endothelial major histocompatibility complex class II expression in high-glucose environment. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H1592-H1599.	1.5	2
309	Needles in Our Technology Haystacks. Circulation: Cardiovascular Interventions, 2017, 10, .	1.4	2
310	Topographic Pattern of Valve Calcification. JACC: Cardiovascular Imaging, 2018, 11, 1032-1035.	2.3	2
311	A Scalable Approach to Determine Intracardiac Pressure From Mechanical Circulatory Support Device Signals. IEEE Transactions on Biomedical Engineering, 2021, 68, 905-913.	2.5	2
312	Multimodal Loading Environment Predicts Bioresorbable Vascular Scaffolds' Durability. Annals of Biomedical Engineering, 2021, 49, 1298-1307.	1.3	2
313	Improving Automated Tissue Characterization in Optical Coherence Tomography by Melding Attenuation Compensation with Deep Learning. , 2021, , .		2
314	Translational challenges for synthetic imaging in cardiology. European Heart Journal Digital Health, 2021, 2, 559-560.	0.7	2
315	Hysteretic device characteristics indicate cardiac contractile state for guiding mechanical circulatory support device use. Intensive Care Medicine Experimental, 2021, 9, 62.	0.9	2
316	Acute ST Depressions in a Patient With Idiopathic Hypertrophic Subaortic Stenosis and Normal Coronary Arteries. Circulation, 2002, 106, 757-758.	1.6	1
317	The Fiber of Modern Society. Science Translational Medicine, 2011, 3, 89cm14.	5.8	1
318	Convective and Diffusive Transport in Drug Delivery. , 2013, , 573-606.		1
319	AldehydeAmine Chemistry Enables Tissue Adhesive Materials to Respond to Physiologic Variation and Pathologic States. Israel Journal of Chemistry, 2013, 53, n/a-n/a.	1.0	1
320	Paracrine Regulation from Tissue Engineered Constructs. , 2015, , 169-184.		1
321	Tracking of Drug Release and Material Fate for Naturally Derived Omega-3 Fatty Acid Biomaterials. Annals of Biomedical Engineering, 2016, 44, 782-792.	1.3	1
322	Aorticorenal Ganglia Pacing. JACC: Cardiovascular Interventions, 2019, 12, 1121-1124.	1.1	1
323	Novel Lesional Transcriptional Signature Separates Atherosclerosis With and Without Diabetes in Yorkshire Swine and Humans. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1487-1503.	1.1	1
324	Karnovsky's Dictum: The Endothelium Is Good-Looking and Smart. Circulation, 2021, 143, 2166-2168.	1.6	1

#	Article	IF	CITATIONS
325	In Vitro Validation of a Novel Image-Based Inverse Method for Mechanical Characterization of Vessels. , 2021, , .		1
326	Effects of amide and amine plasma-treated ePTFE vascular grafts on endothelial cell lining in an artificial circulatory system. , 1998, 42, 188.		1
327	The Role of Syndecanâ€l in Arterial Mechanotransduction. FASEB Journal, 2010, 24, 480.1.	0.2	1
328	Morphometric analysis of the human common hepatic artery reveals a rich and accessible target for sympathetic liver denervation. Scientific Reports, 2022, 12, 1413.	1.6	1
329	Biocompatibility Comparison of Stainless Steel, Gold-Coated, and Heat-Treated Gold-Coated Endovascular Stents. Materials Research Society Symposia Proceedings, 2001, 711, 1.	0.1	0
330	Heparin and Gene Microarrays as a New Pharmacodynamic Tool. ACS Symposium Series, 2003, , 15-32.	0.5	0
331	Oral Heparin Prevents Neointimal Growth Following Vascular Injury: Implications for Potential Clinical Use. ACS Symposium Series, 2003, , 33-46.	0.5	0
332	Encapsulated Pheochromocytoma Cells Secrete Potent Noncatecholamine Factors. Tissue Engineering - Part A, 2009, 15, 1719-1728.	1.6	0
333	Models of Human Vascular Disease: Is There an Animal of La Mancha?. Revista Espanola De Cardiologia (English Ed), 2011, 64, 739-742.	0.4	0
334	Letter by Joynt and Edelman Regarding Article, "latrogenic Giant Osborn Waves― Circulation, 2011, 123, e390; author reply e391.	1.6	0
335	Endothelial Insights: The Florian Dialectic. Science Translational Medicine, 2014, 6, 239fs24.	5.8	0
336	In vivo deformation of stented coronary vessel centerline with cardiac motion: Implications for angiography-OCT fusion. , 2015, , .		0
337	Matrixâ€Embedded Cells: Matrixâ€Embedded Endothelial Cells Attain a Progenitorâ€Like Phenotype (Adv.) Tj ETC	2q]] 0.78	34314 rgBT (
338	B'reshith. Journal of Controlled Release, 2018, 285, 252-257.	4.8	0
339	Glucose modulates basement membrane fibroblast growth factorâ€2 via changes in endothelial cell permeability. FASEB Journal, 2007, 21, A268.	0.2	0
340	Elevated glucose increases tumor necrosis factorâ€Î± induced endothelial cell death via fibroblast growth factorâ€2 release. FASEB Journal, 2008, 22, 743.12.	0.2	0
341	Endothelium exposed to atheroprone flow promotes monocyte transmigration and specification. FASEB Journal, 2013, 27, 379.4.	0.2	0
342	A Novel Algorithm to Quantify Coronary Remodeling Using Inferred Normal Dimensions. Arquivos Brasileiros De Cardiologia, 2015, 105, 390-8.	0.3	0

#	Article	IF	CITATIONS
343	Abstract 18045: Mild Coarctation of the Aorta: To Touch or Not to Touch the Patient? Looking at Left Ventricular Function and Hemodynamics. Circulation, 2015, 132, .	1.6	0
344	Abstract 347: Early Drug-Induced Inhibition of Proatherogenic Genes in Coronary Regions of Low Endothelial Shear Stress in Diabetic Hyperlipidemic Juvenile Swine. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, .	1.1	0