Michael F Thomashow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6143758/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PLANT COLD ACCLIMATION: Freezing Tolerance Genes and Regulatory Mechanisms. Annual Review of Plant Biology, 1999, 50, 571-599.	14.2	3,002
2	Arabidopsis CBF1 Overexpression Induces COR Genes and Enhances Freezing Tolerance. Science, 1998, 280, 104-106.	6.0	1,580
3	Arabidopsis Transcriptome Profiling Indicates That Multiple Regulatory Pathways Are Activated during Cold Acclimation in Addition to the CBF Cold Response Pathway[W]. Plant Cell, 2002, 14, 1675-1690.	3.1	1,425
4	Low temperature regulation of theArabidopsisCBF family of AP2 transcriptional activators as an early step in cold-inducedCORgene expression. Plant Journal, 1998, 16, 433-442.	2.8	1,062
5	Overexpression of the Arabidopsis CBF3Transcriptional Activator Mimics Multiple Biochemical Changes Associated with Cold Acclimation. Plant Physiology, 2000, 124, 1854-1865.	2.3	975
6	The 5?-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Molecular Biology, 1994, 24, 701-713.	2.0	755
7	Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1192-200.	3.3	697
8	Transcription Factor CBF4 Is a Regulator of Drought Adaptation in Arabidopsis. Plant Physiology, 2002, 130, 639-648.	2.3	682
9	Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant Journal, 2004, 41, 195-211.	2.8	669
10	Molecular Basis of Plant Cold Acclimation: Insights Gained from Studying the CBF Cold Response Pathway. Plant Physiology, 2010, 154, 571-577.	2.3	638
11	From The Cover: A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15243-15248.	3.3	635
12	Role of Cold-Responsive Genes in Plant Freezing Tolerance1. Plant Physiology, 1998, 118, 1-8.	2.3	599
13	Roles for <i>Arabidopsis</i> CAMTA Transcription Factors in Cold-Regulated Gene Expression and Freezing Tolerance A. Plant Cell, 2009, 21, 972-984.	3.1	587
14	Components of the Arabidopsis C-Repeat/Dehydration-Responsive Element Binding Factor Cold-Response Pathway Are Conserved in <i>Brassica napus</i> and Other Plant Species. Plant Physiology, 2001, 127, 910-917.	2.3	577
15	So What's New in the Field of Plant Cold Acclimation? Lots!: Fig. 1 Plant Physiology, 2001, 125, 89-93.	2.3	504
16	Arabidopsis Transcriptional Activators CBF1, CBF2, and CBF3 have Matching Functional Activities. Plant Molecular Biology, 2004, 54, 767-781.	2.0	494
17	Regulation of the Arabidopsis CBF regulon by a complex lowâ€ŧemperature regulatory network. Plant Journal, 2015, 82, 193-207.	2.8	413
18	Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerantArabidopsis. Plant Journal, 2004, 39, 905-919.	2.8	412

#	Article	IF	CITATIONS
19	Low Temperature Induction of Arabidopsis CBF1, 2, and 3 Is Gated by the Circadian Clock. Plant Physiology, 2005, 137, 961-968.	2.3	385
20	CIRCADIAN CLOCK-ASSOCIATED 1 and LATE ELONGATED HYPOCOTYL regulate expression of the C-REPEAT BINDING FACTOR (CBF) pathway in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7241-7246.	3.3	343
21	Cold Induction of Arabidopsis CBF Genes Involves Multiple ICE (Inducer of CBF Expression) Promoter Elements and a Cold-Regulatory Circuit That Is Desensitized by Low Temperature. Plant Physiology, 2003, 133, 910-918.	2.3	312
22	Disruption Mutations of ADA2b and GCN5 Transcriptional Adaptor Genes Dramatically Affect Arabidopsis Growth, Development, and Gene Expression[W]. Plant Cell, 2003, 15, 626-638.	3.1	288
23	Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15054-15059.	3.3	282
24	Roles of <scp>CAMTA</scp> transcription factors and salicylic acid in configuring the lowâ€ŧemperature transcriptome and freezing tolerance of <scp>A</scp> rabidopsis. Plant Journal, 2013, 75, 364-376.	2.8	263
25	Molecular Cloning and Expression of <i>cor</i> (<i>Co</i> ld- <i>R</i> egulated) Genes in <i>Arabidopsis thaliana</i> . Plant Physiology, 1990, 93, 1246-1252.	2.3	254
26	Transcriptional adaptor and histone acetyltransferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional activator involved in cold-regulated gene expression. Nucleic Acids Research, 2001, 29, 1524-1533.	6.5	250
27	Cold Acclimation in <i>Arabidopsis thaliana</i> . Plant Physiology, 1988, 87, 745-750.	2.3	244
28	<i>Cis</i> -regulatory code of stress-responsive transcription in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14992-14997.	3.3	186
29	DNA Sequence Analysis of a Complementary DNA for Cold-Regulated <i>Arabidopsis</i> Gene <i>cor15</i> and Characterization of the COR 15 Polypeptide. Plant Physiology, 1992, 99, 519-525.	2.3	176
30	Arabidopsis transcription factors regulating cold acclimation. Physiologia Plantarum, 2006, 126, 72-80.	2.6	173
31	Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield. Plant Biotechnology Journal, 2007, 5, 591-604.	4.1	145
32	Cold-Induced CBF–PIF3 Interaction Enhances Freezing Tolerance by Stabilizing the phyB Thermosensor in Arabidopsis. Molecular Plant, 2020, 13, 894-906.	3.9	128
33	A role for circadian evening elements in coldâ€regulated gene expression in Arabidopsis. Plant Journal, 2009, 60, 328-339.	2.8	117
34	A comparison of the low temperature transcriptomes and CBF regulons of three plant species that differ in freezing tolerance: Solanum commersonii, Solanum tuberosum, and Arabidopsis thaliana. Journal of Experimental Botany, 2011, 62, 3807-3819.	2.4	115
35	CAMTA-Mediated Regulation of Salicylic Acid Immunity Pathway Genes in Arabidopsis Exposed to Low Temperature and Pathogen Infection. Plant Cell, 2017, 29, 2465-2477.	3.1	115
36	Mapping of barley homologs to genes that regulate low temperature tolerance in Arabidopsis. Theoretical and Applied Genetics, 2006, 112, 832-842.	1.8	112

MICHAEL F THOMASHOW

#	Article	IF	CITATIONS
37	Natural variation in the Câ€repeat binding factor cold response pathway correlates with local adaptation of Arabidopsis ecotypes. Plant Journal, 2015, 84, 682-693.	2.8	104
38	Ectopic AtCBF1 over-expression enhances freezing tolerance and induces cold acclimation-associated physiological modifications in potato. Plant, Cell and Environment, 2008, 31, 393-406.	2.8	97
39	Histone dynamics and roles of histone acetyltransferases during cold-induced gene regulation in Arabidopsis. Plant Molecular Biology, 2010, 74, 183-200.	2.0	79
40	Arabidopsis CAMTA Transcription Factors Regulate Pipecolic Acid Biosynthesis and Priming of Immunity Genes. Molecular Plant, 2020, 13, 157-168.	3.9	78
41	Components of the Arabidopsis C-Repeat/Dehydration-Responsive Element Binding Factor Cold-Response Pathway Are Conserved in Brassica napus and Other Plant Species. Plant Physiology, 2001, 127, 910-917.	2.3	74
42	Multiple hydrophobic motifs in Arabidopsis CBF1 COOH-terminus provide functional redundancy in trans-activation. Plant Molecular Biology, 2005, 58, 543-559.	2.0	58
43	Genetic basis of photosynthetic responses to cold in two locally adapted populations of Arabidopsis thaliana. Journal of Experimental Botany, 2018, 69, 699-709.	2.4	56
44	CBF-dependent and CBF-independent regulatory pathways contribute to the differences in freezing tolerance and cold-regulated gene expression of two Arabidopsis ecotypes locally adapted to sites in Sweden and Italy. PLoS ONE, 2018, 13, e0207723.	1.1	56
45	DNA binding by the Arabidopsis CBF1 transcription factor requires the PKKP/RAGRxKFxETRHP signature sequence. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2010, 1799, 454-462.	0.9	55
46	SCREAMing Twist on the Role of ICE1 in Freezing Tolerance. Plant Cell, 2020, 32, 816-819.	3.1	17
47	Genetic and physiological mechanisms of freezing tolerance in locally adapted populations of a winter annual. American Journal of Botany, 2020, 107, 250-261.	0.8	15
48	Molecular Mechanisms Affecting Cell Wall Properties and Leaf Architecture. Advances in Photosynthesis and Respiration, 2018, , 209-253.	1.0	7