Thomas A Sellers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6143448/publications.pdf

Version: 2024-02-01

201674 182427 5,078 49 27 51 citations h-index g-index papers 51 51 51 9123 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Epidemiology of ovarian cancer: a review. Cancer Biology and Medicine, 2017, 14, 9-32.	3.0	981
2	Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nature Genetics, 2018, 50, 928-936.	21.4	652
3	A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nature Genetics, 2014, 46, 1103-1109.	21.4	408
4	Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nature Genetics, 2017, 49, 680-691.	21.4	356
5	GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nature Genetics, 2013, 45, 362-370.	21.4	326
6	A genome-wide association study identifies a new ovarian cancer susceptibility locus on 9p22.2. Nature Genetics, 2009, 41, 996-1000.	21.4	276
7	Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. Nature Genetics, 2021, 53, 65-75.	21.4	264
8	Identification of six new susceptibility loci for invasive epithelial ovarian cancer. Nature Genetics, 2015, 47, 164-171.	21.4	221
9	Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types. Cancer Discovery, 2016, 6, 1052-1067.	9.4	157
10	A functional variant in <i>HOXA11-AS</i> , a novel long non-coding RNA, inhibits the oncogenic phenotype of epithelial ovarian cancer. Oncotarget, 2015, 6, 34745-34757.	1.8	98
11	Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants. Nature Communications, 2018, 9, 2256.	12.8	88
12	Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast–ovarian cancer susceptibility locus. Nature Communications, 2016, 7, 12675.	12.8	78
13	Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans. Human Molecular Genetics, 2015, 24, 5589-5602.	2.9	67
14	A Cross-Cancer Genetic Association Analysis of the DNA Repair and DNA Damage Signaling Pathways for Lung, Ovary, Prostate, Breast, and Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 193-200.	2.5	66
15	Cis-eQTL analysis and functional validation of candidate susceptibility genes for high-grade serous ovarian cancer. Nature Communications, 2015, 6, 8234.	12.8	63
16	Super-Enhancer-Associated LncRNA UCA1 Interacts Directly with AMOT to Activate YAP Target Genes in Epithelial Ovarian Cancer. IScience, 2019, 17, 242-255.	4.1	60
17	Two Novel Susceptibility Loci for Prostate Cancer in Men of African Ancestry. Journal of the National Cancer Institute, 2017, 109, .	6.3	57
18	A Large-Scale Analysis of Genetic Variants within Putative miRNA Binding Sites in Prostate Cancer. Cancer Discovery, 2015, 5, 368-379.	9.4	56

#	Article	IF	CITATIONS
19	Prediction of individual genetic risk to prostate cancer using a polygenic score. Prostate, 2015, 75, 1467-1474.	2.3	54
20	A Transcriptome-Wide Association Study Among 97,898 Women to Identify Candidate Susceptibility Genes for Epithelial Ovarian Cancer Risk. Cancer Research, 2018, 78, 5419-5430.	0.9	54
21	Atlas of prostate cancer heritability in European and African-American men pinpoints tissue-specific regulation. Nature Communications, 2016, 7, 10979.	12.8	50
22	Genetic Data from Nearly 63,000 Women of European Descent Predicts DNA Methylation Biomarkers and Epithelial Ovarian Cancer Risk. Cancer Research, 2019, 79, 505-517.	0.9	49
23	Quantifying the Genetic Correlation between Multiple Cancer Types. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 1427-1435.	2.5	48
24	Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk. PLoS ONE, 2015, 10, e0128106.	2.5	44
25	Kernel canonical correlation analysis for assessing gene–gene interactions and application to ovarian cancer. European Journal of Human Genetics, 2014, 22, 126-131.	2.8	33
26	Genome-wide Analysis Identifies Novel Loci Associated with Ovarian Cancer Outcomes: Findings from the Ovarian Cancer Association Consortium. Clinical Cancer Research, 2015, 21, 5264-5276.	7.0	33
27	Common Genetic Variation and Susceptibility to Ovarian Cancer: Current Insights and Future Directions. Cancer Epidemiology Biomarkers and Prevention, 2018, 27, 395-404.	2.5	33
28	A Germline Variant at 8q24 Contributes to Familial Clustering of Prostate Cancer in Men of African Ancestry. European Urology, 2020, 78, 316-320.	1.9	32
29	Germline polymorphisms in an enhancer of <i>PSIP1</i> are associated with progression-free survival in epithelial ovarian cancer. Oncotarget, 2016, 7, 6353-6368.	1.8	29
30	Network-Based Integration of GWAS and Gene Expression Identifies a <i>HOX</i> -Centric Network Associated with Serous Ovarian Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1574-1584.	2.5	28
31	MAFG is a potential therapeutic target to restore chemosensitivity in cisplatin-resistant cancer cells by increasing reactive oxygen species. Translational Research, 2018, 200, 1-17.	5.0	28
32	Genome-wide association studies identify susceptibility loci for epithelial ovarian cancer in east Asian women. Gynecologic Oncology, 2019, 153, 343-355.	1.4	28
33	Genome-Wide Association Study of Prostate Cancer–Specific Survival. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1796-1800.	2.5	27
34	A Genetic Risk Score to Personalize Prostate Cancer Screening, Applied to Population Data. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1731-1738.	2.5	27
35	Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC). Journal of Genetics and Genome Research, 2015, 2, .	0.3	25
36	Enrichment of putative PAX8 target genes at serous epithelial ovarian cancer susceptibility loci. British Journal of Cancer, 2017, 116, 524-535.	6.4	23

#	Article	IF	CITATIONS
37	Epithelialâ€Mesenchymal Transition (EMT) Gene Variants and Epithelial Ovarian Cancer (EOC) Risk. Genetic Epidemiology, 2015, 39, 689-697.	1.3	22
38	Correlation between germline mutations in MMR genes and microsatellite instability in ovarian cancer specimens. Familial Cancer, 2017, 16, 351-355.	1.9	18
39	Exome genotyping arrays to identify rare and low frequency variants associated with epithelial ovarian cancer risk. Human Molecular Genetics, 2016, 25, 3600-3612.	2.9	17
40	The effect of sample size on polygenic hazard models for prostate cancer. European Journal of Human Genetics, 2020, 28, 1467-1475.	2.8	14
41	Variation in NF-κB Signaling Pathways and Survival in Invasive Epithelial Ovarian Cancer. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 1421-1427.	2.5	13
42	Inherited variants affecting RNA editing may contribute to ovarian cancer susceptibility: results from a large-scale collaboration. Oncotarget, 2016, 7, 72381-72394.	1.8	13
43	Cross-Cancer Genome-Wide Association Study of Endometrial Cancer and Epithelial Ovarian Cancer Identifies Genetic Risk Regions Associated with Risk of Both Cancers. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 217-228.	2.5	12
44	Variants in genes encoding small GTPases and association with epithelial ovarian cancer susceptibility. PLoS ONE, 2018, 13, e0197561.	2.5	9
45	Height, selected genetic markers and prostate cancer risk: results from the PRACTICAL consortium. British Journal of Cancer, 2017, 117, 734-743.	6.4	7
46	Evaluation of vitamin D biosynthesis and pathway target genes reveals UGT2A1/2 and EGFR polymorphisms associated with epithelial ovarian cancer in African American Women. Cancer Medicine, 2019, 8, 2503-2513.	2.8	6
47	Assessment of variation in immunosuppressive pathway genes reveals TGFBR2 to be associated with risk of clear cell ovarian cancer. Oncotarget, 2016, 7, 69097-69110.	1.8	5
48	The association of copy number variation and percent mammographic density. BMC Research Notes, 2015, 8, 297.	1.4	2
49	New Lung Cancer Susceptibility Locus Identified: Significance and Implications for Other Genome-Wide Association Studies. Cancer Discovery, 2012, 2, 110-111.	9.4	1