
Yeala Shaked

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6143356/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Iron availability, cellular iron quotas, and nitrogen fixation in <i>Trichodesmium</i> . Limnology and Oceanography, 2001, 46, 1249-1260.	3.1	342
2	A general kinetic model for iron acquisition by eukaryotic phytoplankton. Limnology and Oceanography, 2005, 50, 872-882.	3.1	258
3	Dust- and mineral-iron utilization by the marine dinitrogen-fixer Trichodesmium. Nature Geoscience, 2011, 4, 529-534.	12.9	188
4	Disassembling Iron Availability to Phytoplankton. Frontiers in Microbiology, 2012, 3, 123.	3.5	168
5	The role of unchelated Fe in the iron nutrition of phytoplankton. Limnology and Oceanography, 2008, 53, 400-404.	3.1	153
6	Zinc availability and alkaline phosphatase activity in Emiliania huxleyi: Implications for Zn-P co-limitation in the ocean. Limnology and Oceanography, 2006, 51, 299-309.	3.1	130
7	Iron bioavailability to phytoplankton: an empirical approach. ISME Journal, 2015, 9, 1003-1013.	9.8	123
8	Extracellular production of superoxide by marine diatoms: Contrasting effects on iron redox chemistry and bioavailability. Limnology and Oceanography, 2005, 50, 1172-1180.	3.1	115
9	The role of reduction in iron uptake processes in a unicellular, planktonic cyanobacterium. Environmental Microbiology, 2011, 13, 2990-2999.	3.8	105
10	Coordinated transporter activity shapes high-affinity iron acquisition in cyanobacteria. ISME Journal, 2014, 8, 409-417.	9.8	104
11	Extracellular Production and Degradation of Superoxide in the Coral Stylophora pistillata and Cultured Symbiodinium. PLoS ONE, 2010, 5, e12508.	2.5	99
12	Sulfur isotope homogeneity of oceanic DMSP and DMS. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18413-18418.	7.1	92
13	Iron–Nutrient Interactions within Phytoplankton. Frontiers in Plant Science, 2016, 7, 1223.	3.6	86
14	A role for mrgA, a DPS family protein, in the internal transport of Fe in the cyanobacterium Synechocystis sp. PCC6803. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 814-819.	1.0	79
15	A NOVEL ALKALINE PHOSPHATASE IN THE COCCOLITHOPHOREEMILIANIA HUXLEYI(PRYMNESIOPHYCEAE) AND ITS REGULATION BY PHOSPHORUS. Journal of Phycology, 2006, 42, 835-844.	2.3	72
16	A Comparative Study of Iron Uptake Rates and Mechanisms amongst Marine and Fresh Water Cyanobacteria: Prevalence of Reductive Iron Uptake. Life, 2015, 5, 841-860.	2.4	60
17	Zinc, cadmium, and cobalt interreplacement and relative use efficiencies in the coccolithophore Emiliania huxleyi. Limnology and Oceanography, 2007, 52, 2294-2305.	3.1	57
18	Nitrite dynamics in the open ocean—clues from seasonal and diurnal variations. Marine Ecology - Progress Series, 2012, 453, 11-26.	1.9	50

YEALA SHAKED

#	Article	IF	CITATIONS
19	Chemical characterization of atmospheric dust from a weekly time series in the north Red Sea between 2006 and 2010. Geochimica Et Cosmochimica Acta, 2017, 211, 373-393.	3.9	47
20	Colonies of marine cyanobacteria Trichodesmium interact with associated bacteria to acquire iron from dust. Communications Biology, 2019, 2, 284.	4.4	43
21	Simultaneous determination of iron reduction and uptake by phytoplankton. Limnology and Oceanography: Methods, 2004, 2, 137-145.	2.0	40
22	Hydrogen Peroxide Photocycling in the Gulf of Aqaba, Red Sea. Environmental Science & Technology, 2010, 44, 3238-3244.	10.0	39
23	Iron redox dynamics in the surface waters of the Gulf of Aqaba, Red Sea. Geochimica Et Cosmochimica Acta, 2008, 72, 1540-1554.	3.9	38
24	The biogeochemical cycle of iron and associated elements in Lake Kinneret 1,2 1Associate editor: M. L. Machesky 2See Electronic Annex (Elsevier Web site; Science Direct) Geochimica Et Cosmochimica Acta, 2004, 68, 1439-1451.	3.9	36
25	Mineral iron utilization by natural and cultured <i>Trichodesmium</i> and associated bacteria. Limnology and Oceanography, 2018, 63, 2307-2320.	3.1	36
26	Rapid Hydrogen Peroxide release from the coral Stylophora pistillata during feeding and in response to chemical and physical stimuli. Scientific Reports, 2016, 6, 21000.	3.3	29
27	Insights into the bioavailability of oceanic dissolved Fe from phytoplankton uptake kinetics. ISME Journal, 2020, 14, 1182-1193.	9.8	29
28	Release of hydrogen peroxide and antioxidants by the coral <i>Stylophora pistillata</i> to its external <i>milieu</i> . Biogeosciences, 2014, 11, 4587-4598.	3.3	27
29	Trace element profiles of the sea anemone <i>Anemonia viridis</i> living nearby a natural CO ₂ vent. PeerJ, 2014, 2, e538.	2.0	27
30	Dynamics of hydrogen peroxide in a coral reef: Sources and sinks. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1793-1801.	3.0	26
31	Hydrogen Dynamics in Trichodesmium Colonies and Their Potential Role in Mineral Iron Acquisition. Frontiers in Microbiology, 2019, 10, 1565.	3.5	26
32	Selective collection of iron-rich dust particles by natural <i>Trichodesmium</i> colonies. ISME Journal, 2020, 14, 91-103.	9.8	24
33	Phytoplankton-Mediated Redox Cycle of Iron in the Epilimnion of Lake Kinneret. Environmental Science & Technology, 2002, 36, 460-467.	10.0	23
34	Probing the bioavailability of organically bound iron: a case study in the Synechococcus-rich waters of the Gulf of Aqaba. Aquatic Microbial Ecology, 2009, 56, 241-253.	1.8	22
35	Metallophores associated with <i>Trichodesmium erythraeum</i> colonies from the Gulf of Aqaba. Metallomics, 2019, 11, 1547-1557.	2.4	20
36	Iron transport in cyanobacteria – from molecules to communities. Trends in Microbiology, 2022, 30, 229-240.	7.7	19

#	Article	IF	CITATIONS
37	Comparison of the kinetics of iron release from a marine (Trichodesmium erythraeum) Dps protein and mammalian ferritin in the presence and absence of ligands. Journal of Inorganic Biochemistry, 2007, 101, 1686-1691.	3.5	18
38	Seas of Superoxide. Science, 2013, 340, 1176-1177.	12.6	18
39	Enhanced ferrihydrite dissolution by a unicellular, planktonic cyanobacterium: a biological contribution to particulate iron bioavailability. Environmental Microbiology, 2016, 18, 5101-5111.	3.8	13
40	Mineral iron dissolution in Trichodesmium colonies: The role of O 2 and pH microenvironments. Limnology and Oceanography, 2020, 65, 1149-1160.	3.1	13
41	Rapid Hydrogen Peroxide Release during Coral-Bacteria Interactions. Frontiers in Marine Science, 2016, 3, .	2.5	12
42	Availability of iron from ironâ€storage proteins to marine phytoplankton. Limnology and Oceanography, 2008, 53, 890-899.	3.1	9
43	Investigation of Siderophore-Promoted and Reductive Dissolution of Dust in Marine Microenvironments Such as Trichodesmium Colonies. Frontiers in Marine Science, 2020, 7, .	2.5	9
44	Probing the Bioavailability of Dissolved Iron to Marine Eukaryotic Phytoplankton Using In Situ Single Cell Iron Quotas. Global Biogeochemical Cycles, 2021, 35, e2021GB006979.	4.9	9
45	Colonies of the marine cyanobacterium Trichodesmium optimize dust utilization by selective collection and retention of nutrient-rich particles. IScience, 2022, 25, 103587.	4.1	7
46	Metagenomes of Red Sea Subpopulations Challenge the Use of Marker Genes and Morphology to Assess Trichodesmium Diversity. Frontiers in Microbiology, 2022, 13, .	3.5	4
47	Colonies of the Marine Cyanobacterium <i>Trichodesmium</i> Optimize Dust Utilization by Selective	0.4	1