
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6143069/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A class of porous metallic nanostructures. Nature, 1999, 401, 548-548.	13.7	481
2	A Class of Microstructured Particles Through Colloidal Crystallization. Science, 2000, 287, 2240-2243.	6.0	478
3	Colloidal crystals as templates for porous materials. Current Opinion in Colloid and Interface Science, 2000, 5, 56-63.	3.4	342
4	Assembly of Gold Nanostructured Films Templated by Colloidal Crystals and Use in Surface-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2000, 122, 9554-9555.	6.6	329
5	Pore size distributions of cation-exchange adsorbents determined by inverse size-exclusion chromatography. Journal of Chromatography A, 2000, 883, 39-54.	1.8	263
6	Protein Phase Behavior in Aqueous Solutions: Crystallization, Liquid-Liquid Phase Separation, Gels, and Aggregates. Biophysical Journal, 2008, 94, 570-583.	0.2	214
7	Rapid Measurement of Protein Osmotic Second Virial Coefficients by Self-Interaction Chromatography. Biophysical Journal, 2002, 82, 1620-1631.	0.2	201
8	Adsorption of Charged Latex Particles on Mica Studied by Atomic Force Microscopy. Journal of Colloid and Interface Science, 1996, 179, 587-599.	5.0	188
9	Electrostatic and van der Waals contributions to protein adsorption: computation of equilibrium constants. Langmuir, 1993, 9, 962-972.	1.6	159
10	Patterns of protein–protein interactions in salt solutions and implications for protein crystallization. Protein Science, 2007, 16, 1867-1877.	3.1	149
11	Knockout of a difficultâ€ŧoâ€ŧemove CHO host cell protein, lipoprotein lipase, for improved polysorbate stability in monoclonal antibody formulations. Biotechnology and Bioengineering, 2017, 114, 1006-1015.	1.7	147
12	Identification and characterization of host cell protein productâ€associated impurities in monoclonal antibody bioprocessing. Biotechnology and Bioengineering, 2014, 111, 904-912.	1.7	146
13	Pore size distributions of ion exchangers and relation to protein binding capacity. Journal of Chromatography A, 2006, 1126, 107-119.	1.8	138
14	Electrostatic and van der Waals Contributions to Protein Adsorption: Comparison of Theory and Experiment. Langmuir, 1995, 11, 3500-3509.	1.6	134
15	Comparison of protein adsorption isotherms and uptake rates in preparative cation-exchange materials. Journal of Chromatography A, 1998, 827, 281-293.	1.8	126
16	Nondiffusive mechanisms enhance protein uptake rates in ion exchange particles. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 420-425.	3.3	125
17	2-D and 3-D Interactions in Random Sequential Adsorption of Charged Particles. Journal of Colloid and Interface Science, 1997, 194, 138-153.	5.0	111
18	Protein adsorption and transport in polymer-functionalized ion-exchangers. Journal of Chromatography A, 2011, 1218, 8748-8759.	1.8	109

#	Article	IF	CITATIONS
19	Determination of pore size distributions of porous chromatographic adsorbents by inverse size-exclusion chromatography. Journal of Chromatography A, 2004, 1037, 273-282.	1.8	106
20	Determinants of protein retention characteristics on cation-exchange adsorbents. Journal of Chromatography A, 2001, 933, 57-72.	1.8	105
21	Grand canonical Brownian dynamics simulation of colloidal adsorption. Journal of Chemical Physics, 1997, 107, 9157-9167.	1.2	103
22	Effects of pH on protein–protein interactions and implications for protein phase behavior. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 600-610.	1.1	103
23	Computation of the electrostatic interaction energy between a protein and a charged surface. The Journal of Physical Chemistry, 1992, 96, 3130-3134.	2.9	100
24	Solvation Free Energy of Amino Acids and Side-Chain Analogues. Journal of Physical Chemistry B, 2007, 111, 2098-2106.	1.2	99
25	Protein adsorption and transport in dextran-modified ion-exchange media. I: Adsorption. Journal of Chromatography A, 2009, 1216, 7774-7784.	1.8	96
26	Correlation between the Osmotic Second Virial Coefficient and the Solubility of Proteins. Biotechnology Progress, 2001, 17, 182-187.	1.3	95
27	Design of resilient processing plants—l Process design under consideration of dynamic aspects. Chemical Engineering Science, 1982, 37, 245-258.	1.9	93
28	Drop formation in liquid–liquid systems before and after jetting. Physics of Fluids, 1995, 7, 2617-2630.	1.6	93
29	Hydrophobic interaction chromatography of proteins. Journal of Chromatography A, 2007, 1141, 191-205.	1.8	93
30	Influence of Structural Details in Modeling Electrostatically Driven Protein Adsorption. Langmuir, 1997, 13, 6761-6768.	1.6	91
31	Protein Adsorption Isotherms through Colloidal Energetics. Langmuir, 1999, 15, 3905-3914.	1.6	90
32	Mechanistic model of retention in protein ion-exchange chromatography. Journal of Chromatography A, 1996, 726, 45-56.	1.8	83
33	Expression of difficultâ€ŧoâ€remove host cell protein impurities during extended Chinese hamster ovary cell culture and their impact on continuous bioprocessing. Biotechnology and Bioengineering, 2015, 112, 1232-1242.	1.7	83
34	Effects of ionic strength on lysozyme uptake rates in cation exchangers. I: Uptake in SP Sepharose FF. Biotechnology and Bioengineering, 2005, 91, 139-153.	1.7	82
35	Significance and estimation of chromatographic parameters. Journal of Chromatography A, 1987, 384, 285-299.	1.8	79
36	Dynamic breakup of liquid–liquid jets. Physics of Fluids, 1994, 6, 2640-2655.	1.6	79

#	Article	IF	CITATIONS
37	Sorption processes in ion-exchange chromatography of viruses. Journal of Chromatography A, 2007, 1142, 2-12.	1.8	77
38	Self-interaction chromatography: a novel screening method for rational protein crystallization. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 1531-1535.	2.5	76
39	Protein adsorption and transport in dextran-modified ion-exchange media. II. Intraparticle uptake and column breakthrough. Journal of Chromatography A, 2011, 1218, 4698-4708.	1.8	71
40	Measurements of protein self-association as a guide to crystallization. Current Opinion in Biotechnology, 2003, 14, 512-516.	3.3	69
41	Effect of pH and Ca2+-Induced Associations of Soybean Proteins. Journal of Agricultural and Food Chemistry, 2002, 50, 4953-4958.	2.4	68
42	Host cell protein impurities in chromatographic polishing steps for monoclonal antibody purification. Biotechnology and Bioengineering, 2016, 113, 1260-1272.	1.7	68
43	Quantitative imaging by confocal scanning fluorescence microscopy of protein crystallizationvialiquid–liquid phase separation. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 819-825.	2.5	67
44	Predictive crystallization of ribonuclease A via rapid screening of osmotic second virial coefficients. Proteins: Structure, Function and Bioinformatics, 2002, 50, 303-311.	1.5	66
45	Interactions and phase behavior of a monoclonal antibody. Biotechnology Progress, 2011, 27, 280-289.	1.3	63
46	Direct measurement of protein osmotic second virial cross coefficients by cross-interaction chromatography. Protein Science, 2004, 13, 1379-1390.	3.1	61
47	Self-Interaction Nanoparticle Spectroscopy:  A Nanoparticle-Based Protein Interaction Assay. Journal of the American Chemical Society, 2008, 130, 3106-3112.	6.6	61
48	TIRF of salt and surface effects on protein adsorption. Journal of Colloid and Interface Science, 1992, 148, 469-484.	5.0	60
49	Improved Parametric Representation of Water Dielectric Data for Lifshitz Theory Calculations. Journal of Colloid and Interface Science, 1996, 179, 637-639.	5.0	60
50	Nonnative Protein Polymers: Structure, Morphology, and Relation to Nucleation and Growth. Biophysical Journal, 2007, 93, 4392-4403.	0.2	60
51	Adsorbed Layers of Ferritin at Solid and Fluid Interfaces Studied by Atomic Force Microscopy. Journal of Colloid and Interface Science, 2000, 223, 261-272.	5.0	59
52	Modeling of flow in a polymeric chromatographic monolith. Journal of Chromatography A, 2011, 1218, 3466-3475.	1.8	57
53	Excluded volume contribution to the osmotic second virial coefficient for proteins. AICHE Journal, 1995, 41, 1010-1014.	1.8	54
54	Protein adsorption and transport in dextran-modified ion-exchange media. III. Effects of resin charge density and dextran content on adsorption and intraparticle uptake. Journal of Chromatography A, 2011, 1218, 7180-7188.	1.8	54

#	Article	IF	CITATIONS
55	Protein crystallization by design: chymotrypsinogen without precipitants 1 1Edited by I. A. Wilson. Journal of Molecular Biology, 2000, 300, 235-239.	2.0	53
56	Applications of proteomic methods for CHO host cell protein characterization in biopharmaceutical manufacturing. Current Opinion in Biotechnology, 2018, 53, 144-150.	3.3	52
57	Light-Scattering Studies of Protein Solutions: Role of Hydration in Weak Protein-Protein Interactions. Biophysical Journal, 2005, 89, 1564-1573.	0.2	50
58	Three-Dimensional Pore Structure of Chromatographic Adsorbents from Electron Tomography. Langmuir, 2006, 22, 11148-11157.	1.6	50
59	Steady laminar flow of liquid–liquid jets at high Reynolds numbers*. Physics of Fluids A, Fluid Dynamics, 1993, 5, 1703-1717.	1.6	48
60	A Consistent Experimental and Modeling Approach to Light-Scattering Studies of Protein-Protein Interactions in Solution. Biophysical Journal, 2005, 88, 3300-3309.	0.2	48
61	Recovery of Chinese hamster ovary host cell proteins for proteomic analysis. Biotechnology Journal, 2014, 9, 87-99.	1.8	47
62	Calculation of short-range interactions between proteins. Biophysical Chemistry, 1999, 78, 219-231.	1.5	46
63	Effects of pore structure and molecular size on diffusion in chromatographic adsorbents. Journal of Chromatography A, 2006, 1126, 95-106.	1.8	46
64	Modeling of dispersion in a polymeric chromatographic monolith. Journal of Chromatography A, 2012, 1237, 55-63.	1.8	45
65	Electrostatic Contribution to the Energy and Entropy of Protein Adsorption. Journal of Colloid and Interface Science, 1998, 203, 218-221.	5.0	44
66	On-Line Spectroscopic Characterization of Sodium Cyanide with Nanostructured Gold Surface-Enhanced Raman Spectroscopy Substrates. Applied Spectroscopy, 2002, 56, 1524-1530.	1.2	44
67	TIRF of salt and surface effects on protein adsorption. Journal of Colloid and Interface Science, 1992, 148, 485-507.	5.0	43
68	Determination of fluid–solid transitions in model protein solutions using the histogram reweighting method and expanded ensemble simulations. Journal of Chemical Physics, 2004, 120, 3003-3014.	1.2	43
69	Electrostatic Contributions to Protein Retention in Ion-Exchange Chromatography. 1. CytochromecVariants. Analytical Chemistry, 2004, 76, 6743-6752.	3.2	43
70	Mechanistic Modeling of Preparative Column Chromatography for Biotherapeutics. Annual Review of Chemical and Biomolecular Engineering, 2020, 11, 235-255.	3.3	42
71	A Predictive Approach to Correlating Protein Adsorption Isotherms on Ion-Exchange Media. Journal of Physical Chemistry B, 2008, 112, 1028-1040.	1.2	41
72	Flowâ€dependent entrapment of large bioparticles in porous process media. Biotechnology and Bioengineering, 2009, 104, 127-133.	1.7	41

#	Article	IF	CITATIONS
73	Multi-column displacement chromatography for separation of charge variants of monoclonal antibodies. Journal of Chromatography A, 2019, 1586, 40-51.	1.8	41
74	Dispersion coefficient for laminar flow in curved tubes. AICHE Journal, 1988, 34, 2052-2058.	1.8	40
75	Casein precipitation equilibria in the presence of calcium ions and phosphates. Colloids and Surfaces B: Biointerfaces, 2003, 29, 297-307.	2.5	39
76	Electrostatic Contributions to Protein Retention in Ion-Exchange Chromatography. 2. Proteins with Various Degrees of Structural Differences. Analytical Chemistry, 2005, 77, 2157-2165.	3.2	39
77	Kinetics and equilibria of lysozyme precipitation and crystallization in concentrated ammonium sulfate solutions. Biotechnology and Bioengineering, 2006, 94, 177-188.	1.7	39
78	Developments and opportunities in continuous biopharmaceutical manufacturing. MAbs, 2021, 13, 1903664.	2.6	39
79	Anisotropic Contributions to Protein–Protein Interactions. Journal of Chemical Theory and Computation, 2014, 10, 835-845.	2.3	38
80	STM and AFM in biotechnology. Biotechnology Progress, 1993, 9, 1-11.	1.3	35
81	Effect of Spacer Arm Length on Protein Retention on a Strong Cation Exchange Adsorbent. Analytical Chemistry, 2004, 76, 5816-5822.	3.2	35
82	A patch–antipatch representation of specific protein interactions. Journal of Crystal Growth, 2001, 232, 195-203.	0.7	33
83	Contributions of depth filter components to protein adsorption in bioprocessing. Biotechnology and Bioengineering, 2018, 115, 1938-1948.	1.7	33
84	Multiscale Modeling of Protein Uptake Patterns in Chromatographic Particles. Langmuir, 2008, 24, 5991-5995.	1.6	32
85	Dispersion in laminar flow in short tubes. AICHE Journal, 1989, 35, 2048-2052.	1.8	31
86	Flow in curved ducts. Part 2. Rotating ducts. Journal of Fluid Mechanics, 1990, 217, 575-593.	1.4	31
87	Relating Surfactant Properties to Activity and Solubilization of the Human Adenosine A3 Receptor. Biophysical Journal, 2005, 89, 452-464.	0.2	31
88	Hydrophobic interaction chromatography of proteins. Journal of Chromatography A, 2007, 1141, 235-243.	1.8	31
89	Chromatography of proteins on charge-variant ion exchangers and implications for optimizing protein uptake rates. Journal of Chromatography A, 2007, 1163, 190-202.	1.8	31
90	Effects of Ammonium Sulfate and Sodium Chloride Concentration on PEG/Protein Liquidâ^'Liquid Phase Separation. Langmuir, 2008, 24, 10345-10351.	1.6	31

#	Article	IF	CITATIONS
91	Relation of structure to performance characteristics of monolithic and perfusive stationary phases. Journal of Chromatography A, 2009, 1216, 6365-6376.	1.8	31
92	Comparative Effects of Salt, Organic, and Polymer Precipitants on Protein Phase Behavior and Implications for Vapor Diffusion. Crystal Growth and Design, 2009, 9, 682-691.	1.4	30
93	Dispersion in round tubes and its implications for extracolumn dispersion. Journal of Chromatography A, 1991, 556, 235-248.	1.8	29
94	Phase equilibria in the lysozyme-ammonium sulfate-water system. Biotechnology and Bioengineering, 2000, 70, 498-506.	1.7	29
95	Salting-in characteristics of globular proteins. Biophysical Chemistry, 2011, 156, 72-78.	1.5	28
96	Energetic and Entropic Contributions to the Interaction of Unequal Spherical Double Layers. Journal of Colloid and Interface Science, 1994, 165, 177-194.	5.0	27
97	Binding of Alkyl Polyglucoside Surfactants to Bacteriorhodopsin and its Relation to Protein Stability. Biophysical Journal, 2008, 94, 3647-3658.	0.2	27
98	Insights into Protein Sorption and Desorption on Dextranâ€Modified Ionâ€Exchange Media. Chemical Engineering and Technology, 2012, 35, 91-101.	0.9	27
99	Robust mechanistic modeling of protein ion-exchange chromatography. Journal of Chromatography A, 2021, 1660, 462669.	1.8	27
100	Electrical Double-Layer Interaction between Heterogeneously Charged Colloidal Particles: A Superposition Formulation. Journal of Colloid and Interface Science, 1998, 201, 233-243.	5.0	26
101	Effect of Gravity on Colloidal Deposition Studied by Atomic Force Microscopy. Journal of Colloid and Interface Science, 2001, 240, 9-16.	5.0	26
102	Toward in silico CMC: An industrial collaborative approach to modelâ€based process development. Biotechnology and Bioengineering, 2020, 117, 3986-4000.	1.7	26
103	Hydrophobic interaction chromatography of proteins. Journal of Chromatography A, 2008, 1205, 46-59.	1.8	25
104	Binary adsorption of globular proteins on ion-exchange media. Journal of Chromatography A, 2009, 1216, 6177-6195.	1.8	24
105	Effects of Urea on the Microstructure and Phase Behavior of Aqueous Solutions of Poly(oxyethylene) Surfactants. Industrial & Engineering Chemistry Research, 2011, 50, 85-96.	1.8	23
106	Use of moments to characterize mass transport in steady flows of arbitrary complexity. Chemical Engineering Science, 1982, 37, 954-956.	1.9	22
107	Mobility of Adsorbed Proteins Studied by Fluorescence Recovery after Photobleaching. Langmuir, 2003, 19, 3705-3711.	1.6	22
108	The role of protein and surfactant interactions in membrane-protein crystallization. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 724-730.	2.5	22

#	Article	IF	CITATIONS
109	A critical examination of the decoupling approximation for small-angle scattering from hard ellipsoids of revolution. Journal of Applied Crystallography, 2016, 49, 1734-1739.	1.9	22
110	Effects of additives on surfactant phase behavior relevant to bacteriorhodopsin crystallization. Protein Science, 2006, 15, 2682-2696.	3.1	21
111	A comparative study of monoclonal antibodies. 1. phase behavior and protein–protein interactions. Biotechnology Progress, 2015, 31, 268-276.	1.3	21
112	The effects of axial diffusion and permeability barriers on the transient response of tissue cylinders. I. Solution in transform space. Journal of Theoretical Biology, 1982, 97, 663-677.	0.8	20
113	Molecular thermodynamic properties of protein solutions from partial specific volumes. AICHE Journal, 1995, 41, 1005-1009.	1.8	20
114	Salting-Out of Lysozyme and Ovalbumin from Mixtures: Predicting Precipitation Performance from Proteinâ^'Protein Interactions. Industrial & Engineering Chemistry Research, 2008, 47, 5203-5213.	1.8	19
115	Ion-exchange chromatography of proteins: the inside story. Materials Today: Proceedings, 2016, 3, 3559-3567.	0.9	19
116	Estimating and leveraging protein diffusion on ion-exchange resin surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7004-7010.	3.3	19
117	The effects of axial diffusion and permeability barriers on the transient response of tissue cylinders. II. Solution in time domain. Journal of Theoretical Biology, 1984, 106, 207-238.	0.8	18
118	Characterization and Suitability of Therapeutic Antibody Dense Phases for Subcutaneous Delivery. Molecular Pharmaceutics, 2013, 10, 3582-3591.	2.3	18
119	Ionic strength-dependent changes in tentacular ion exchangers with variable ligand density. II. Functional properties. Journal of Chromatography A, 2017, 1506, 55-64.	1.8	18
120	Measured and calculated effects of mutations in bacteriophage T4 lysozyme on interactions in solution. Proteins: Structure, Function and Bioinformatics, 2000, 41, 123-132.	1.5	17
121	Optimization of protein sample preparation for twoâ€dimensional electrophoresis. Electrophoresis, 2012, 33, 1947-1957.	1.3	17
122	Polymorphic Protein Crystal Growth: Influence of Hydration and Ions in Glucose Isomerase. Crystal Growth and Design, 2014, 14, 46-57.	1.4	17
123	Partitioning of host and recombinant cells in aqueous two-phase polymer systems. Biotechnology and Bioengineering, 1990, 36, 484-492.	1.7	16
124	Correlation of diafiltration sieving behavior of lysozyme-BSA mixtures with osmotic second virial cross-coefficients. Biotechnology and Bioengineering, 2004, 87, 303-310.	1.7	16
125	Relative retention of the fibroblast growth factors FGF-1 and FGF-2 on strong cation-exchange sorbents. Journal of Chromatography A, 2004, 1036, 51-60.	1.8	16
126	Characterization of cross-linked cellulosic ion-exchange adsorbents: 1. Structural properties. Journal of Chromatography A, 2013, 1319, 46-56.	1.8	16

#	Article	IF	CITATIONS
127	Ionic strength-dependent changes in tentacular ion exchangers with variable ligand density. I. Structural properties. Journal of Chromatography A, 2016, 1463, 90-101.	1.8	16
128	Determinants of protein elution rates from preparative ion-exchange adsorbents. Journal of Chromatography A, 2016, 1440, 94-104.	1.8	16
129	Measurement of mobility of adsorbed colloids by lateral force microscopy. Journal of Colloid and Interface Science, 2003, 267, 352-359.	5.0	15
130	Hydrophobic interaction chromatography of proteins. IV. Protein adsorption capacity and transport in preparative mode. Journal of Chromatography A, 2011, 1218, 427-440.	1.8	15
131	Silica-based strong anion exchange media for protein purification. Journal of Chromatography A, 2015, 1376, 53-63.	1.8	15
132	Characterization of dextran-grafted hydrophobic charge-induction resins: Structural properties, protein adsorption and transport. Journal of Chromatography A, 2017, 1517, 44-53.	1.8	15
133	DNA retention on depth filters. Journal of Membrane Science, 2019, 570-571, 464-471.	4.1	15
134	Self-interaction chromatography of proteins on a microfluidic monolith. Biochemical Engineering Journal, 2011, 53, 216-222.	1.8	14
135	Shrinking-core modeling of binary chromatographic breakthrough. Journal of Chromatography A, 2011, 1218, 2222-2231.	1.8	14
136	Local Crystalline Structure in an Amorphous Protein Dense Phase. Biophysical Journal, 2015, 109, 1716-1723.	0.2	14
137	Towards continuous mAb purification: Clearance of host cell proteins from CHO cell culture harvests via "flowâ€through affinity chromatography―using peptideâ€based adsorbents. Biotechnology and Bioengineering, 2022, 119, 1873-1889.	1.7	14
138	Characterization of cross-linked cellulosic ion-exchange adsorbents: 2. Protein sorption and transport. Journal of Chromatography A, 2016, 1438, 100-112.	1.8	13
139	Effects of Resin Architecture and Protein Size on Nanoscale Protein Distribution in Ion-Exchange Media. Langmuir, 2018, 34, 673-684.	1.6	13
140	The Combined Simulation Approach of Atomistic and Continuum Models for the Thermodynamics of Lysozyme Crystals. Journal of Physical Chemistry B, 2005, 109, 19507-19515.	1.2	12
141	Roles of Additives and Precipitants in Crystallization of Calcium- and Integrin-Binding Protein. Crystal Growth and Design, 2005, 5, 1499-1507.	1.4	12
142	Characterization of Protein–Excipient Microheterogeneity in Biopharmaceutical Solid-State Formulations by Confocal Fluorescence Microscopy. Molecular Pharmaceutics, 2017, 14, 546-553.	2.3	12
143	Displacement to separate hostâ€cell proteins and aggregates in cationâ€exchange chromatography of monoclonal antibodies. Biotechnology and Bioengineering, 2021, 118, 164-174.	1.7	12
144	Role of competitive interactions in growth rate trends of subtilisin s88 crystals. Journal of Crystal Growth, 2000, 212, 543-554.	0.7	11

#	Article	IF	CITATIONS
145	Characterization of lysozyme adsorption in cellulosic chromatographic materials using small-angle neutron scattering. Journal of Chromatography A, 2015, 1399, 45-52.	1.8	11
146	Molecular Effects of Anionic Surfactants on Lysozyme Precipitation and Crystallization. Crystal Growth and Design, 2005, 5, 351-359.	1.4	10
147	Convective dispersion and interphase mass transfer. Chemical Engineering Science, 1986, 41, 2795-2810.	1.9	9
148	Effect of bioparticle size on dispersion and retention in monolithic and perfusive beds. Journal of Chromatography A, 2010, 1217, 7372-7384.	1.8	9
149	Characterization of Phase Separation in Mixed Surfactant Films by Liquid Tapping Mode Atomic Force Microscopy. Langmuir, 1999, 15, 3021-3025.	1.6	8
150	Polyhedral Instability of Glucose Isomerase Crystals as Revealed by Confocal Scanning Fluorescence Microscopy. Crystal Growth and Design, 2007, 7, 1411-1415.	1.4	8
151	Self-Assembly of Medium-Chain Alkyl Monoglucosides in Ammonium Sulfate Solutions with Poly(ethylene glycol). Langmuir, 2007, 23, 5358-5366.	1.6	8
152	In Situ Characterization of the Microstructural Evolution of Biopharmaceutical Solid-State Formulations with Implications for Protein Stability. Molecular Pharmaceutics, 2019, 16, 173-183.	2.3	8
153	A natural interaction: Chemical engineering and molecular biophysics. AICHE Journal, 2003, 49, 806-812.	1.8	6
154	Data-Driven Development of Predictive Models for Sustained Drug Release. Journal of Pharmaceutical Sciences, 2019, 108, 3582-3591.	1.6	4
155	Behavior of weakly adsorbing protein impurities in flow-through ion-exchange chromatography. Journal of Chromatography A, 2022, 1664, 462788.	1.8	4
156	Assembly of gold nanostructured films templated by colloidal crystals and use in surface-enhanced Raman spectroscopy. , 2002, , .		3
157	Erratum to "Determination of pore size distributions of porous chromatographic adsorbents by inverse size-exclusion chromatography―[J. Chromatogr. A 1037 (2004) 273–282]. Journal of Chromatography A, 2006, 1113, 259.	1.8	3
158	Implications of turbulent flow in connecting capillaries used in high performance liquid chromatography. Journal of Chromatography A, 2018, 1536, 185-194.	1.8	3
159	Mechanisms of precipitate formation during the purification of an Fcâ€fusion protein. Biotechnology and Bioengineering, 2018, 115, 2489-2503.	1.7	3
160	Design of PLGA-Based Drug Delivery Systems Using a Physically-Based Sustained Release Model. Journal of Pharmaceutical Sciences, 2022, 111, 345-357.	1.6	3
161	Mechanism of formation of lysozyme crystals in concentrated ammonium sulfate solution from concentration profiles and equilibria: Influence of the 2nd osmotic virial coefficient. Powder Technology, 2009, 190, 112-117.	2.1	2
162	Fluorescence recovery after photobleaching investigation of protein transport and exchange in chromatographic media. Journal of Chromatography A, 2014, 1340, 33-49.	1.8	2

#	Article	IF	CITATIONS
163	Measured and calculated effects of mutations in bacteriophage T4 lysozyme on interactions in solution. Proteins: Structure, Function and Bioinformatics, 2000, 41, 123-132.	1.5	1
164	Nanocrystalline protein domains via salting-out. Acta Crystallographica Section F, Structural Biology Communications, 2021, 77, 412-419.	0.4	1
165	Contributions of Depth Filter Components to Protein Adsorption in Protein Bioprocessing. Biotechnology and Bioengineering, 0, , .	1.7	Ο