Adriana Bastos Carvalho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6142846/publications.pdf

Version: 2024-02-01

39 papers 903 citations

15 h-index 29 g-index

41 all docs

41 docs citations

times ranked

41

1785 citing authors

#	Article	IF	CITATIONS
1	Cell-Based Therapies for Heart Failure. Frontiers in Pharmacology, 2021, 12, 641116.	1.6	2
2	Stem cell therapies in cardiac diseases: Current status and future possibilities. World Journal of Stem Cells, 2021, 13, 1231-1247.	1.3	12
3	Progression of heart failure is attenuated by antioxidant therapy with N-acetylcysteine in myocardial infarcted female rats. Molecular Biology Reports, 2020, 47, 8645-8656.	1.0	7
4	Tissue-engineered human embryonic stem cell-containing cardiac patches: evaluating recellularization of decellularized matrix. Journal of Tissue Engineering, 2020, 11, 204173142092148.	2.3	24
5	Proteomics in the World of Induced Pluripotent Stem Cells. Cells, 2019, 8, 703.	1.8	10
6	Echocardiographic Measurements in a Preclinical Model of Chronic Chagasic Cardiomyopathy in Dogs: Validation and Reproducibility. Frontiers in Cellular and Infection Microbiology, 2019, 9, 332.	1.8	12
7	Paradoxical effect of testosterone supplementation therapy on cardiac ischemia/reperfusion injury in aged rats. Journal of Steroid Biochemistry and Molecular Biology, 2019, 191, 105335.	1.2	7
8	R534C mutation in hERG causes a trafficking defect in iPSC-derived cardiomyocytes from patients with type 2 long QT syndrome. Scientific Reports, 2019, 9, 19203.	1.6	24
9	Integrin alpha-5 subunit is critical for the early stages of human pluripotent stem cell cardiac differentiation. Scientific Reports, 2019, 9, 18077.	1.6	14
10	Toll-Like Receptor 4 and NLRP3 Caspase 1- Interleukin- $1\hat{1}^2$ -Axis are Not Involved in Colon Ascendens Stent Peritonitis-Associated Heart Disease. Shock, 2018, 50, 483-492.	1.0	8
11	Embryonic stem cell-derived cardiomyocytes for the treatment of doxorubicin-induced cardiomyopathy. Stem Cell Research and Therapy, 2018, 9, 30.	2.4	14
12	Generation of patient-specific induced pluripotent stem cell lines from one patient with Jervell and Lange-Nielsen syndrome, one with type 1 long QT syndrome and two healthy relatives. Stem Cell Research, 2018, 31, 174-180.	0.3	9
13	Cardiac ischemia/reperfusion injury is inversely affected by thyroid hormones excess or deficiency in male Wistar rats. PLoS ONE, 2018, 13, e0190355.	1.1	22
14	p53 Modulates the Fate of Cardiac Progenitor Cells Ex Vivo and in the Diabetic Heart In Vivo. EBioMedicine, 2017, 16, 224-237.	2.7	9
15	Administration of anabolic steroid during adolescence induces long-term cardiac hypertrophy and increases susceptibility to ischemia/reperfusion injury in adult Wistar rats. Journal of Steroid Biochemistry and Molecular Biology, 2017, 171, 34-42.	1.2	30
16	Calcium/Calmodulin Protein Kinase II-Dependent Ryanodine Receptor Phosphorylation Mediates Cardiac Contractile Dysfunction Associated With Sepsis. Critical Care Medicine, 2017, 45, e399-e408.	0.4	20
17	Cell therapies for Chagas disease. Cytotherapy, 2017, 19, 1339-1349.	0.3	10
18	Hair follicle-derived mesenchymal cells support undifferentiated growth of embryonic stem cells. Experimental and Therapeutic Medicine, 2017, 13, 1779-1788.	0.8	7

#	Article	IF	Citations
19	Cardiosphere-derived cells do not improve cardiac function in rats with cardiac failure. Stem Cell Research and Therapy, 2017, 8, 36.	2.4	29
20	Bone marrow cell migration to the heart in a chimeric mouse model of acute chagasic disease. Memorias Do Instituto Oswaldo Cruz, 2017, 112, 551-560.	0.8	2
21	Proteomics of cell–cell interactions in health and disease. Proteomics, 2016, 16, 328-344.	1.3	12
22	Macrophage-dependent IL- $1\hat{l}^2$ production induces cardiac arrhythmias in diabetic mice. Nature Communications, 2016, 7, 13344.	5.8	203
23	99m-Technetium binding site in bone marrow mononuclear cells. Stem Cell Research and Therapy, 2015, 6, 115.	2.4	5
24	Adipose Tissue-Derived Mesenchymal Stromal Cells Protect Mice Infected with Trypanosoma cruzi from Cardiac Damage through Modulation of Anti-parasite Immunity. PLoS Neglected Tropical Diseases, 2015, 9, e0003945.	1.3	26
25	Stem Cell-Based Therapies in Chagasic Cardiomyopathy. BioMed Research International, 2015, 2015, 1-5.	0.9	3
26	Generation of human iPS cell line ihFib3.2 from dermal fibroblasts. Stem Cell Research, 2015, 15, 445-448.	0.3	7
27	Reprogramming to a pluripotent state modifies mesenchymal stem cell resistance to oxidative stress. Journal of Cellular and Molecular Medicine, 2014, 18, 824-831.	1.6	14
28	Improvement of cardiac function by placenta-derived mesenchymal stem cells does not require permanent engraftment and is independent of the insulin signaling pathway. Stem Cell Research and Therapy, 2014, 5, 102.	2.4	25
29	MicroRNAs: potential therapeutic targets in diabetic complications of the cardiovascular and renal systems. Acta Physiologica, 2014, 211, 491-500.	1.8	28
30	Human Menstrual Blood-Derived Mesenchymal Cells as New Human Feeder Layer System for Human Embryonic Stem Cells. Cell Medicine, 2014, 7, 25-35.	5.0	7
31	Turning scar into muscle. World Journal of Cardiology, 2012, 4, 267.	0.5	1
32	Bone marrow-derived cell therapy in chagasic cardiac disease: a review of pre-clinical and clinical results. Cardiovascular Diagnosis and Therapy, 2012, 2, 213-9.	0.7	1
33	Cell-Based Therapy in Chagas Disease. Advances in Parasitology, 2011, 75, 49-63.	1.4	4
34	Bone marrow cells obtained from cirrhotic rats do not improve function or reduce fibrosis in a chronic liver disease model. Clinical Transplantation, 2011, 25, 54-60.	0.8	14
35	Ultrasound imaging in an experimental model of fatty liver disease and cirrhosis in rats. BMC Veterinary Research, 2010, 6, 6.	0.7	28
36	Heart regeneration: Past, present and future. World Journal of Cardiology, 2010, 2, 107.	0.5	34

#	Article	IF	CITATIONS
37	Progenitor Cells From the Explanted Heart Generate Immunocompatible Myocardium Within the Transplanted Donor Heart. Circulation Research, 2009, 105, 1128-1140.	2.0	33
38	Bone Marrow Multipotent Mesenchymal Stromal Cells Do Not Reduce Fibrosis or Improve Function in a Rat Model of Severe Chronic Liver Injury. Stem Cells, 2008, 26, 1307-1314.	1.4	144
39	Bone Marrow Cell Transplant does Not Prevent or Reverse Murine Liver Cirrhosis. Cell Transplantation, 2008, 17, 943-953.	1.2	38