Teng-Shih Shih

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6142835/publications.pdf

Version: 2024-02-01

687363 454955 45 924 13 30 citations h-index g-index papers 45 45 45 785 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Conversion-coating treatment for magnesium alloys by a permanganate–phosphate solution. Materials Chemistry and Physics, 2003, 80, 191-200.	4.0	239
2	Fatigue of as-extruded AZ61A magnesium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 325, 152-162.	5.6	113
3	Oxide films on magnesium and magnesium alloys. Materials Chemistry and Physics, 2007, 104, 497-504.	4.0	73
4	Combustion of magnesium alloys in air. Materials Chemistry and Physics, 2004, 85, 302-309.	4.0	67
5	Thermally-Formed Oxide on Aluminum and Magnesium. Materials Transactions, 2006, 47, 1347-1353.	1.2	45
6	Interaction of steel with pure Al, Al–7Si and A356 alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 454-455, 349-356.	5.6	42
7	Optical properties of anodic aluminum oxide films on Al1050 alloys. Surface and Coatings Technology, 2008, 202, 3298-3305.	4.8	39
8	Electrochemical behavior of anodized AA7075-T73 alloys as affected by the matrix structure. Applied Surface Science, 2013, 283, 249-257.	6.1	33
9	Diagnosis of Oxide Films by Cavitation Micro-Jet Impact. Materials Transactions, 2003, 44, 327-335.	1.2	28
10	A study on the qualities of GTA-welded squeeze-cast A356 alloy. Journal of Materials Processing Technology, 2001, 116, 101-113.	6.3	22
11	Electrochemical behavior of anodized AA6063-T6 alloys affected by matrix structures. Applied Surface Science, 2013, 264, 410-418.	6.1	17
12	Constituted oxides/nitrides on nitriding 304, 430 and 17-4 PH stainless steel in salt baths over the temperature range 723 to 923K. Applied Surface Science, 2011, 258, 81-88.	6.1	15
13	Effects of the hydrogen content on the development of anodic aluminum oxide film on pure aluminum. Thin Solid Films, 2011, 519, 7817-7825.	1.8	15
14	Effects of Degassing and Fluxing on the Quality of Al-7%Si and A356.2 Alloys. Materials Transactions, 2005, 46, 263-271.	1.2	14
15	Corrosion resistance and high-cycle fatigue strength of anodized/sealed AA7050 and AA7075 alloys. Applied Surface Science, 2015, 351, 997-1003.	6.1	14
16	Effect of Degassing Treatment on the Quality of Al-7Si and A356 Melts. Materials Transactions, 2002, 43, 2913-2920.	1.2	12
17	Decomposition and Reaction of Thermal-Formed Alumina in Aluminum Alloy Castings. Materials Transactions, 2005, 46, 1868-1876.	1.2	12
18	The Effects of Anodization Treatment on the Microstructure and Fatigue Behavior of 7075-T73 Aluminum Alloy. Materials Transactions, 2014, 55, 1280-1285.	1.2	12

#	Article	IF	CITATIONS
19	Effects of Inclusion Particles on the Microstructure and Mechanical Properties of High Strength Austempered Ductile Iron. Materials Transactions, 2003, 44, 995-1003.	1.2	11
20	Effects of silicon, magnesium and strontium content on the qualities of Al-Si-Mg alloys. International Journal of Cast Metals Research, 1998, 10, 273-282.	1.0	10
21	Combustion of AZ61A under different gases. Materials Chemistry and Physics, 2002, 74, 66-73.	4.0	10
22	Monitoring the Progressive Development of an Anodized Film on Aluminum. Journal of the Electrochemical Society, 2007, 154, C678.	2.9	10
23	Effect of A Degassing Treatment on the Quality of Al-7Si and A356 Melts. Materials Transactions, 2004, 45, 1852-1858.	1.2	9
24	Effects of Cryogenic Forging and Anodization on the Mechanical Properties and Corrosion Resistance of AA6066–T6 Aluminum Alloys. Metals, 2016, 6, 51.	2.3	8
25	Permeability of coating in the lost foam casting process. International Journal of Cast Metals Research, 2000, 12, 263-275.	1.0	7
26	Fatigue of as-extruded 7005 aluminum alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 348, 333-344.	5.6	7
27	Marking Oxide Films on the Section of Al-XSi Alloys by Ultrasonic-vibration Treatment. Materials Transactions, 2003, 44, 1190-1197.	1.2	7
28	Thermally Formed Oxides on Al-2 and 3.5 mass% Mg Alloys Heated and Held in Different Gases. Materials Transactions, 2009, 50, 2366-2372.	1.2	7
29	Effects of nickel and processing variables on the mechanical properties of austempered ductile irons. International Journal of Cast Metals Research, 1998, 10, 335-344.	1.0	5
30	Mould-metal movement in a horizontal sand mould. International Journal of Cast Metals Research, 2001, 14, 43-52.	1.0	5
31	Effect of abrasives on the glossiness and reflectance of anodized aluminum alloys. Journal of Materials Science, 2008, 43, 1851-1858.	3.7	3
32	The Optimum Process to Produce High-Strength Cast/Forged Al–8%Zn–2.5%Mg–1%Cu Alloy. Metals, 2019, 9, 970.	2.3	3
33	Thermally Formed Oxide Films on Al–XSi Alloys Heated in Different Gases. Oxidation of Metals, 2008, 70, 69-83.	2.1	2
34	Effect of the nanoscratch resistance of indium nitride thin films in the etching duration. Applied Surface Science, 2012, 261, 610-615.	6.1	2
35	Effects of Cryogenic Forging and Anodization on the Mechanical Properties of AA 7075-T73 Aluminum Alloys. Journal of Materials Engineering and Performance, 2016, 25, 1211-1218.	2.5	2
36	The strength of coating in the lost foam casting process. International Journal of Cast Metals Research, 2000, 12, 251-261.	1.0	1

#	Article	IF	Citations
37	Thermally formed oxide films on Al–6Zn–XMg (XÂ=Â0 and 2 mass%) alloys heated in different gases. Journal of Thermal Analysis and Calorimetry, 2010, 99, 229-235.	3.6	1
38	Mechanical Properties and Fatigue Behavior of Cast/Forged Al–1.2%Mg–1.0%Si–1.0%Cu Aluminum Alloys. Materials Transactions, 2018, 59, 1130-1134.	1.2	1
39	Factors Affecting Toughness and Corrosion Resistance of AA6082 Forgings. Journal of Materials Engineering and Performance, 2021, 30, 367-378.	2.5	1
40	The flow and filling behaviour of sand in expendable pattern castings. International Journal of Cast Metals Research, 1999, 12, 107-117.	1.0	0
41	Development of Oxide Film in Aluminium Melt. Materials Science Forum, 2006, 519-521, 1311-1316.	0.3	0
42	Pores and Microbubbles in Al and Al-XSi Alloys. Materials Transactions, 2007, 48, 1444-1450.	1.2	0
43	Tensile Properties of Forged Direct-Squeeze-Cast Al-(6.0∼8.0 mass%)Si-(0.3∼0.52) Tj ETQq1 1	0.784314 1.2	rgBT /Overl
44	Preparation of Al-Mg Alloy Electrodes by Using Powder Metallurgy and Their Application for Hydrogen Production. Advances in Materials Science and Engineering, 2014, 2014, 1-7.	1.8	0
45	Factors Affecting the Microstructure, Tensile Properties and Corrosion Resistance of AA7075 Forgings. Materials, 2021, 14, 5776.	2.9	0