
Jennifer K Spinler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6142833/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fecal Microbiota Transplantation Commonly Failed in Children With Coâ€Morbidities. Journal of Pediatric Gastroenterology and Nutrition, 2022, 74, 227-235.	0.9	4
2	Bacteroides ovatus colonization influences the abundance of intestinal short chain fatty acids and neurotransmitters. IScience, 2022, 25, 104158.	1.9	41
3	Systems biology approach to functionally assess the <i>Clostridioides difficile</i> pangenome reveals genetic diversity with discriminatory power. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119396119.	3.3	5
4	Mucin-Degrading Microbes Release Monosaccharides That Chemoattract <i>Clostridioides difficile</i> and Facilitate Colonization of the Human Intestinal Mucus Layer. ACS Infectious Diseases, 2021, 7, 1126-1142.	1.8	39
5	<i>Bifidobacterium dentium</i> -derived y-glutamylcysteine suppresses ER-mediated goblet cell stress and reduces TNBS-driven colonic inflammation. Gut Microbes, 2021, 13, 1-21.	4.3	41
6	Bacteroides ovatus Promotes IL-22 Production and Reduces Trinitrobenzene Sulfonic Acid–Driven Colonic Inflammation. American Journal of Pathology, 2021, 191, 704-719.	1.9	39
7	<i>Fusobacterium nucleatum</i> Secretes Outer Membrane Vesicles and Promotes Intestinal Inflammation. MBio, 2021, 12, .	1.8	101
8	The metabolic profile of Bifidobacterium dentium reflects its status as a human gut commensal. BMC Microbiology, 2021, 21, 154.	1.3	13
9	Clostridioides difficile is Chemoattracted to Oligosaccharides Released by Mucin―Degrading Microbes. FASEB Journal, 2021, 35, .	0.2	0
10	Reinfection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.7 variant in an immunocompromised adolescent. Infection Control and Hospital Epidemiology, 2021, , 1-2.	1.0	6
11	Bacteroides ovatus Influences the Levels of Intestinal Neurotransmitters in a Gnotobiotic Model. FASEB Journal, 2021, 35, .	0.2	0
12	Neurotransmitter Profiles Are Altered in the Gut and Brain of Mice Mono-Associated with Bifidobacterium dentium. Biomolecules, 2021, 11, 1091.	1.8	17
13	Systems biology evaluation of refractory Clostridioides difficile infection including multiple failures of fecal microbiota transplantation. Anaerobe, 2021, 70, 102387.	1.0	8
14	Comparison of Whole Genome Sequencing and Repetitive Element PCR for Multidrug- Resistant Pseudomonas aeruginosa Strain Typing. Journal of Molecular Diagnostics, 2021, , .	1.2	3
15	Unraveling the Metabolic Requirements of the Gut Commensal Bacteroides ovatus. Frontiers in Microbiology, 2021, 12, 745469.	1.5	12
16	Systems biology analysis of the Clostridioides difficile core-genome contextualizes microenvironmental evolutionary pressures leading to genotypic and phenotypic divergence. Npj Systems Biology and Applications, 2020, 6, 31.	1.4	15
17	Dietary impact of a plant-derived microRNA on the gut microbiome. ExRNA, 2020, 2, .	1.0	18
18	Reuterin disrupts <i>Clostridioides difficile</i> metabolism and pathogenicity through reactive oxygen species generation. Gut Microbes, 2020, 12, 1795388.	4.3	23

JENNIFER K SPINLER

#	Article	IF	CITATIONS
19	Healthy Human Gastrointestinal Microbiome: Composition and Function After a Decade of Exploration. Digestive Diseases and Sciences, 2020, 65, 695-705.	1.1	104
20	Human intestinal enteroids as a model of <i>Clostridioides difficile</i> -induced enteritis. American Journal of Physiology - Renal Physiology, 2020, 318, G870-G888.	1.6	23
21	Microbial Metabolic Capacity for Intestinal Folate Production and Modulation of Host Folate Receptors. Frontiers in Microbiology, 2019, 10, 2305.	1.5	95
22	Discerning strain-specific Î ² -lactam drug resistance by clonal isolates of multi-drug resistant Pseudomonas aeruginosa using selected reaction monitoring. International Journal of Mass Spectrometry, 2019, 438, 36-43.	0.7	2
23	Planting the Microbiome. Trends in Microbiology, 2019, 27, 90-93.	3.5	11
24	Complete Genome Sequence of the Multidrug-Resistant Pseudomonas aeruginosa Endemic Houston-1 Strain, Isolated from a Pediatric Patient with Cystic Fibrosis and Assembled Using Oxford Nanopore and Illumina Sequencing. Microbiology Resource Announcements, 2019, 8, .	0.3	2
25	Complete Genome Sequence of Clostridioides difficile Ribotype 255 Strain Mta-79, Assembled Using Oxford Nanopore and Illumina Sequencing. Microbiology Resource Announcements, 2019, 8, .	0.3	5
26	Aging impairs protective host defenses against Clostridioides (Clostridium) difficile infection in mice by suppressing neutrophil and IL-22 mediated immunity. Anaerobe, 2018, 54, 83-91.	1.0	16
27	Next-Generation Probiotics Targeting Clostridium difficile through Precursor-Directed Antimicrobial Biosynthesis. Infection and Immunity, 2017, 85, .	1.0	65
28	Probiotics as adjunctive therapy for preventing Clostridium difficile infection – What are we waiting for?. Anaerobe, 2016, 41, 51-57.	1.0	32
29	Administration of probiotic kefir to mice with Clostridium difficile infection exacerbates disease. Anaerobe, 2016, 40, 54-57.	1.0	20
30	FolC2â€mediated folate metabolism contributes to suppression of inflammation by probiotic <i>Lactobacillus reuteri</i> . MicrobiologyOpen, 2016, 5, 802-818.	1.2	44
31	Characterization of Lactobacillus salivarius strains B37 and B60 capable of inhibiting IL-8 production in Helicobacter pylori-stimulated gastric epithelial cells. BMC Microbiology, 2016, 16, 242.	1.3	27
32	Structural and functional changes within the gut microbiota and susceptibility to Clostridium difficile infection. Anaerobe, 2016, 41, 37-43.	1.0	60
33	Lactobacillus rhamnosus L34 and Lactobacillus casei L39 suppress Clostridium difficile-induced IL-8 production by colonic epithelial cells. BMC Microbiology, 2014, 14, 177.	1.3	61
34	If you text them, they will come. Aids, 2014, 28, S313-S321.	1.0	70
35	From Prediction to Function Using Evolutionary Genomics: Human-Specific Ecotypes of Lactobacillus reuteri Have Diverse Probiotic Functions. Genome Biology and Evolution, 2014, 6, 1772-1789.	1.1	83
36	Identification of a proton-chloride antiporter (EriC) by Himar1 transposon mutagenesis in Lactobacillus reuteri and its role in histamine production. Antonie Van Leeuwenhoek, 2014, 105, 579-592.	0.7	9

JENNIFER K SPINLER

#	Article	IF	CITATIONS
37	Antiâ€inflammatory Properties of Gastricâ€derived <i>Lactobacillus plantarum </i> <scp>XB</scp> 7 in the Context of <i>Helicobacter pylori</i> Infection. Helicobacter, 2014, 19, 144-155.	1.6	26
38	Draft genome sequences and description of Lactobacillus rhamnosus strains L31, L34, and L35. Standards in Genomic Sciences, 2014, 9, 744-754.	1.5	5
39	Human Microbiome, Lactobacillaceae in the. , 2014, , 1-8.		1
40	Lactobacillus reuteri-Specific Immunoregulatory Gene <i>rsiR</i> Modulates Histamine Production and Immunomodulation by Lactobacillus reuteri. Journal of Bacteriology, 2013, 195, 5567-5576.	1.0	53
41	Task shifting an inpatient triage, assessment and treatment programme improves the quality of care for hospitalised <scp>M</scp> alawian children. Tropical Medicine and International Health, 2013, 18, 879-886.	1.0	47
42	Exploring Metabolic Pathway Reconstruction and Genome-Wide Expression Profiling in Lactobacillus reuteri to Define Functional Probiotic Features. PLoS ONE, 2011, 6, e18783.	1.1	147
43	Functional identification in Lactobacillus reuteri of a PocR-like transcription factor regulating glycerol utilization and vitamin B12 synthesis. Microbial Cell Factories, 2011, 10, 55.	1.9	38
44	Development and use of a selectable, broad-host-range reporter transposon for identifying environmentally regulated promoters in bacteria. FEMS Microbiology Letters, 2009, 291, 143-150.	0.7	3
45	<i>Lactobacillus saerimneri</i> and <i>Lactobacillus ruminis</i> : novel human-derived probiotic strains with immunomodulatory activities. FEMS Microbiology Letters, 2009, 293, 65-72.	0.7	45
46	Mechanisms of probiosis and prebiosis: considerations for enhanced functional foods. Current Opinion in Biotechnology, 2009, 20, 135-141.	3.3	178
47	Human-derived probiotic Lactobacillus reuteri demonstrate antimicrobial activities targeting diverse enteric bacterial pathogens. Anaerobe, 2008, 14, 166-171.	1.0	254
48	Analysis of truncated variants of the iron dependent transcriptional regulators fromCorynebacterium diphtheriaeandMycobacterium tuberculosis. FEMS Microbiology Letters, 2005, 243, 1-8.	0.7	9
49	Probiotics in Human Medicine: Overview. , 0, , 223-229.		2