
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6142521/publications.pdf Version: 2024-02-01

Δημανό Μεήδι

#	Article	IF	CITATIONS
1	lonic guest in ionic host: ionosilica ionogel composites <i>via</i> ionic liquid confinement in ionosilica supports. Materials Chemistry Frontiers, 2022, 6, 939-947.	3.2	6
2	Hydrolytic vs. Nonhydrolytic Sol-Gel in Preparation of Mixed Oxide Silica–Alumina Catalysts for Esterification. Molecules, 2022, 27, 2534.	1.7	0
3	Strategies for selective functionalization of amorphous chalcogenide rib waveguides. Optical Materials, 2022, 127, 112327.	1.7	0
4	Controlled Silylation of Polysaccharides: Attractive Building Blocks for Biocompatible Foams and Cell-Laden Hydrogels. ACS Applied Polymer Materials, 2022, 4, 4087-4097.	2.0	2
5	Highlighting of LaF3 Reactivity with SiO2 and GeO2 at High Temperature. Ceramics, 2022, 5, 182-200.	1.0	7
6	Recent Achievements on Functionalization within closoâ€Decahydrodecaborate [B ₁₀ H ₁₀] ^{2â^'} Clusters. ChemistrySelect, 2022, 7, .	0.7	15
7	Phosphoniumâ€based polythiophene conjugated polyelectrolytes with different surfactant counterions: thermal properties, selfâ€assembly and photovoltaic performances. Polymer International, 2021, 70, 457-466.	1.6	4
8	Synthesis, characterization and use of a POSS-arylamine based push–pull octamer. New Journal of Chemistry, 2021, 45, 6186-6191.	1.4	3
9	Design of PEGylated Three Ligands Silica Nanoparticles for Multi-Receptor Targeting. Nanomaterials, 2021, 11, 177.	1.9	13
10	The Effect of Size and Thermal Treatment on the Photoluminescent Properties of Europium-Doped SiO2 Nanoparticles Prepared in One Pot by Sol-Gel. Materials, 2021, 14, 1607.	1.3	2
11	Bottom-up strategies for the synthesis of peptide-based polymers. Progress in Polymer Science, 2021, 115, 101377.	11.8	13
12	A Collagen-Mimetic Organic-Inorganic Hydrogel for Cartilage Engineering. Gels, 2021, 7, 73.	2.1	11
13	One-step non-hydrolytic sol-gel synthesis of mesoporous SiO2-Al2O3-NiO catalysts for ethylene oligomerization. Microporous and Mesoporous Materials, 2021, 322, 111165.	2.2	20
14	Sol–gel process: the inorganic approach in protein imprinting. Journal of Materials Chemistry B, 2021, 9, 2155-2178.	2.9	12
15	When graphene meets ionic liquids: a good match for the design of functional materials. Nanoscale, 2021, 13, 2750-2779.	2.8	34
16	Encapsulation of BSA in hybrid PEG hydrogels: stability and controlled release. RSC Advances, 2021, 11, 30887-30897.	1.7	2
17	Development of Amino Acids Functionalized SBA-15 for the Improvement of Protein Adsorption. Molecules, 2021, 26, 6085.	1.7	4
18	Phosphorus-Containing Fluoropolymers: State of the Art and Applications. ACS Applied Materials & Interfaces, 2020, 12, 38-59.	4.0	41

#	Article	IF	CITATIONS
19	Solid–Liquid Europium Ion Extraction via Phosphonic Acid-Functionalized Polyvinylidene Fluoride Siloxanes. Polymers, 2020, 12, 1955.	2.0	3
20	Production of formate from CO ₂ gas under ambient conditions: towards flow-through enzyme reactors. Green Chemistry, 2020, 22, 3727-3733.	4.6	21
21	Strategies for Chalcogenide Thin Film Functionalization. Langmuir, 2020, 36, 7691-7700.	1.6	4
22	Sol-Gel Chemistry: From Molecule to Functional Materials. Molecules, 2020, 25, 2538.	1.7	6
23	Direct Synthesis of Peptide ontaining Silicones: A New Way to Bioactive Materials. Chemistry - A European Journal, 2020, 26, 12839-12845.	1.7	2
24	Clean-activation of the B–H bond in closo-decahydrodecaborate [B10H10]2â^' anion via soft-route. Journal of Organometallic Chemistry, 2020, 910, 121132.	0.8	14
25	In Depth Analysis of Photovoltaic Performance of Chlorophyll Derivative-Based "All Solid-State― Dye-Sensitized Solar Cells. Molecules, 2020, 25, 198.	1.7	10
26	Hybrid Silylated Peptides for the Design of Bio-functionalized Materials. Springer Protocols, 2020, , 69-92.	0.1	2
27	Inorganic Sol–Gel Polymerization for Hydrogel Bioprinting. ACS Omega, 2020, 5, 2640-2647.	1.6	13
28	The presence of PEG on nanoparticles presenting the c[RGDfK]- and/or ATWLPPR peptides deeply affects the RTKs-AKT-GSK3β-eNOS signaling pathway and endothelial cells survival. International Journal of Pharmaceutics, 2019, 568, 118507.	2.6	7
29	Self-mineralization and assembly of a bis-silylated Phe–Phe pseudodipeptide to a structured bioorganic–inorganic material. Materials Horizons, 2019, 6, 2040-2046.	6.4	5
30	Click reactions: Recent trends in preparation of new sorbents and stationary phases for extraction and chromatographic applications. TrAC - Trends in Analytical Chemistry, 2019, 118, 556-573.	5.8	28
31	Chemical insights into bioinks for 3D printing. Chemical Society Reviews, 2019, 48, 4049-4086.	18.7	145
32	Biocompatible Glycineâ€Assisted Catalysis of the Solâ€Gel Process: Development of Cellâ€Embedded Hydrogels. ChemPlusChem, 2019, 84, 1720-1729.	1.3	13
33	Chemical cross-linking methods for cell encapsulation in hydrogels. Materials Today Communications, 2019, 20, 100536.	0.9	47
34	Combining sol–gel and microfluidics processes for the synthesis of protein-containing hybrid microgels. Chemical Communications, 2019, 55, 13112-13115.	2.2	9
35	Self-Limited Grafting of Sub-Monolayers via Diels–Alder Reaction on Glassy Carbon Electrodes: An Electrochemical Insight. ACS Omega, 2019, 4, 20540-20546.	1.6	10
36	Site-specific grafting on titanium surfaces with hybrid temporin antibacterial peptides. Journal of Materials Chemistry B, 2018, 6, 1782-1790.	2.9	26

#	Article	IF	CITATIONS
37	Inorganic polymerization: an attractive route to biocompatible hybrid hydrogels. Journal of Materials Chemistry B, 2018, 6, 3434-3448.	2.9	41
38	Heteromultivalent targeting of integrin αvβ3 and neuropilin 1 promotes cell survival via the activation of the IGF-1/insulin receptors. Biomaterials, 2018, 155, 64-79.	5.7	12
39	New Layered Polythiophene-Silica Composite Through the Self-Assembly and Polymerization of Thiophene-Based Silylated Molecular Precursors. Molecules, 2018, 23, 2510.	1.7	5
40	Europium-Doped Sol-Gel SiO2-Based Glasses: Effect of the Europium Source and Content, Magnesium Addition and Thermal Treatment on Their Photoluminescence Properties. Molecules, 2018, 23, 1768.	1.7	14
41	Tetracycline@silver ions-functionalized mesoporous silica for high bactericidal activity at ultra-low concentration. Nanomedicine, 2018, 13, 1731-1751.	1.7	6
42	Poly(vinylidene fluoride) Containing Phosphonic Acid as Anticorrosion Coating for Steel. ACS Applied Materials & Interfaces, 2017, 9, 6433-6443.	4.0	35
43	Sol–gel synthesis of collagen-inspired peptide hydrogel. Materials Today, 2017, 20, 59-66.	8.3	37
44	Well-designed poly(3-hexylthiophene) as hole transporting material: A new opportunity for solid-state dye-sensitized solar cells. Synthetic Metals, 2017, 226, 157-163.	2.1	23
45	Bioactive peptides grafted silicone dressings: A simple and specific method. Materials Today Chemistry, 2017, 4, 73-83.	1.7	22
46	Use of thulium-doped LaF3 nanoparticles to lower the phonon energy of the thulium's environment in silica-based optical fibres. Optical Materials, 2017, 68, 24-28.	1.7	39
47	Polyhedral Oligomeric Silsesquioxane (POSS) Bearing Glyoxylic Aldehyde as Clickable Platform Towards Multivalent Conjugates. Chemistry - A European Journal, 2017, 23, 17867-17869.	1.7	5
48	Microgels of silylated HPMC as a multimodal system for drug co-encapsulation. International Journal of Pharmaceutics, 2017, 532, 790-801.	2.6	17
49	Vinylidene Fluoride-Based Polymer Network via Cross-Linking of Pendant Triethoxysilane Functionality for Potential Applications in Coatings. Macromolecules, 2017, 50, 9329-9339.	2.2	20
50	Simple and Specific Grafting of Antibacterial Peptides on Silicone Catheters. Advanced Healthcare Materials, 2016, 5, 3067-3073.	3.9	39
51	Selective homodimerization of unprotected peptides using hybrid hydroxydimethylsilane derivatives. RSC Advances, 2016, 6, 32905-32914.	1.7	7
52	Easy Synthesis of Tunable Hybrid Bioactive Hydrogels. Chemistry of Materials, 2016, 28, 1261-1265.	3.2	25
53	Unambiguous and Controlled One-Pot Synthesis of Multifunctional Silica Nanoparticles. Chemistry of Materials, 2016, 28, 885-889.	3.2	29
54	Fluorescent Silica Nanoparticles with Multivalent Inhibitory Effects towards Carbonic Anhydrases. Chemistry - A European Journal, 2015, 21, 10306-10309.	1.7	23

#	Article	IF	CITATIONS
55	Multifunctional Silica Nanoparticles Modified via Silylated-Decaborate Precursors. Journal of Nanomaterials, 2015, 2015, 1-8.	1.5	14
56	A New Way to Siliconeâ€Based Peptide Polymers. Angewandte Chemie - International Edition, 2015, 54, 3778-3782.	7.2	16
57	Turning peptides in comb silicone polymers. Journal of Peptide Science, 2015, 21, 243-247.	0.8	8
58	An efficient route to prepare highly dispersed metallic copper nanoparticles on ordered mesoporous silica with outstanding activity for hydrogenation reactions. Catalysis Science and Technology, 2015, 5, 3735-3745.	2.1	16
59	Self-assembled conjugated polyelectrolyte–surfactant complexes as efficient cathode interlayer materials for bulk heterojunction organic solar cells. Journal of Materials Chemistry A, 2015, 3, 23905-23916.	5.2	16
60	Engineered Adhesion Peptides for Improved Silicon Adsorption. Langmuir, 2015, 31, 11868-11874.	1.6	12
61	New triethoxysilylated 10-vertex closo-decaborate clusters. Synthesis and controlled immobilization into mesoporous silica. Dalton Transactions, 2014, 43, 13087-13095.	1.6	20
62	Single-ion conductor nanocomposite organic–inorganic hybrid membranes for lithium batteries. Journal of Materials Chemistry A, 2014, 2, 12162-12165.	5.2	29
63	Chirality in DNA–Ĩ€-conjugated polymer supramolecular structures: insights into the self-assembly. Chemical Communications, 2013, 49, 5483.	2.2	45
64	Ladder-like aminopropylsilsesquioxane. A nice alternative for controlled drug delivery. RSC Advances, 2013, 3, 8160.	1.7	1
65	Bioorganic hybrid OMS by straightforward grafting of trialkoxysilyl peptides. Journal of Materials Chemistry B, 2013, 1, 2921.	2.9	19
66	From protected trialkoxysilyl-peptide building blocks to bioorganic–silica hybrid materials. Journal of Materials Chemistry B, 2013, 1, 6510.	2.9	18
67	Multi-functional hybrid materials for proton conductivity. New Journal of Chemistry, 2012, 36, 1218.	1.4	9
68	From an Octakis(3 yanopropyl)silsesquioxane Building Block to a Highly COOHâ€Functionalized Hybrid Organic–Inorganic Material. European Journal of Inorganic Chemistry, 2012, 2012, 143-150.	1.0	26
69	Synthesis and characterisation of π-conjugated polymer/silica hybrids containing regioregular ionic polythiophenes. Journal of Materials Chemistry, 2011, 21, 2733.	6.7	34
70	From molecular chemistry to hybrid nanomaterials. Design and functionalization. Chemical Society Reviews, 2011, 40, 563-574.	18.7	185
71	Selective Lanthanides Sequestration Based on a Selfâ€Assembled Organosilica. Chemistry - A European Journal, 2010, 16, 10226-10233.	1.7	18
72	Self-assembly of layered functionalized hybrid materials. A good opportunity for extractive chemistry. Journal of Materials Chemistry, 2010, 20, 9281.	6.7	21

#	Article	IF	CITATIONS
73	Self-assembly of layered organosilicas based on weak intermolecular interactions. Dalton Transactions, 2010, 39, 7534.	1.6	41
74	Bifunctional ordered mesoporous materials: direct synthesis and study of the distribution of two distinct functional groups in the pore channels. Journal of Materials Chemistry, 2008, 18, 4193.	6.7	46
75	From simple molecules to highly functionalised lamellar materials. Journal of Materials Chemistry, 2008, 18, 2028.	6.7	36
76	Direct synthesis of bifunctional mesoporous organosilicas containing chelating groups in the framework and reactive functional groups in the channel pores. Journal of Materials Chemistry, 2007, 17, 349-356.	6.7	45
77	An original synthesis of highly ordered organosilica with a high content of thiol groups. Chemical Communications, 2006, , 347-349.	2.2	46
78	Preparation of a hybrid organic–inorganic material containing macrocyclic triolefinic 15-membered palladium(0) complexCatalytic activity in Suzuki cross-coupling and butadiene telomerization reactions. Applied Catalysis A: General, 2006, 297, 117-124.	2.2	37
79	Hydrophilic conditions: a new way for self-assembly of hybrid silica containing long alkylene chains. Journal of Materials Chemistry, 2005, 15, 841-843.	6.7	48
80	Synthesis of large-pore ordered mesoporous silicas containing aminopropyl groups. New Journal of Chemistry, 2005, 29, 965.	1.4	41
81	CO2as a Supramolecular Assembly Agent: A Route for Lamellar Materials with a High Content of Amine Groups. Journal of the American Chemical Society, 2005, 127, 11204-11205.	6.6	63
82	Hybrid Materials Containing Metal(II) Schiff Base Complex Covalently Linked to the Silica Matrix by Two Siâ^'C Bonds:  Reaction with Dioxygen. Chemistry of Materials, 2003, 15, 3152-3160.	3.2	44
83	Study of Silyl Cations Bearing an Aryldiamine Pincer Ligand. Organometallics, 1996, 15, 4326-4333.	1.1	59
84	Use of the 2,6-Bis[(dimethylamino)methyl]phenyl Ligand for the Study of Nucleophilic Substitution at Hexacoordinate Silicon Centers. Evidence Suggestive of a Heptacoordinate Silicon Transition State. Organometallics, 1995, 14, 194-198.	1.1	50