Nori Ohara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6141983/publications.pdf

Version: 2024-02-01

393982 433756 1,099 58 19 31 citations h-index g-index papers 66 66 66 952 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Blowover Risk Assessment for Tractor-Trailer Trucks in High Winds Using a Blowover and Statistical Model. Transportation Research Record, 2023, 2677, 562-576.	1.0	1
2	Spatial snowdrift modelling for an open natural terrain using a physicallyâ€based linear particle distribution equation. Hydrological Processes, 2022, 36, .	1.1	3
3	A new Stefan equation to characterize the evolution of thermokarst lake and talik geometry. Cryosphere, 2022, 16, 1247-1264.	1.5	5
4	Geophysical Observations of Taliks Below Drained Lake Basins on the Arctic Coastal Plain of Alaska. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020889.	1.4	9
5	Remote Sensing-Based Statistical Approach for Defining Drained Lake Basins in a Continuous Permafrost Region, North Slope of Alaska. Remote Sensing, 2021, 13, 2539.	1.8	8
6	Dynamical downscaling of global reanalysis data for high-resolution spatial modeling of snow accumulation/melting at the central/southern Sierra Nevada watersheds. Journal of Hydrology, 2021, 598, 126445.	2.3	9
7	Trend analysis of watershed-scale annual and seasonal precipitation in Northern California based on dynamically downscaled future climate projections. Journal of Water and Climate Change, 2020, 11, 86-105.	1.2	4
8	Identifying historical and future potential lake drainage events on the western Arctic coastal plain of Alaska. Permafrost and Periglacial Processes, 2020, 31, 110-127.	1.5	30
9	Permafrost thaw lake methane flux estimates using GPR. , 2020, , .		O
10	Theoretical Stable Hydraulic Section based on the Principle of Least Action. Scientific Reports, 2019, 9, 7957.	1.6	8
11	Understanding subgrid variability of snow depth at 1â€km scale using Lidar measurements. Hydrological Processes, 2019, 33, 1525-1537.	1.1	8
12	Impacts of climate change on snow accumulation and melting processes over mountainous regions in Northern California during the 21st century. Science of the Total Environment, 2019, 685, 104-115.	3.9	13
13	Modeling Subgrid Variability of Snow Depth Using the Fokkerâ€Planck Equation Approach. Water Resources Research, 2019, 55, 3137-3155.	1.7	11
14	Impact of air temperature on physically-based maximum precipitation estimation through change in moisture holding capacity of air. Journal of Hydrology, 2018, 556, 1050-1063.	2.3	23
15	Spatial delineation of riparian groundwater within alluvium deposit of mountainous region using Laplace equation. Hydrological Processes, 2018, 32, 30-38.	1.1	3
16	Analysis of future climate change impacts on snow distribution over mountainous watersheds in Northern California by means of a physically-based snow distribution model. Science of the Total Environment, 2018, 645, 1065-1082.	3.9	13
17	Geophysical Measurements to Determine the Hydrologic Partitioning of Snowmelt on a Snowâ€Dominated Subalpine Hillslope. Water Resources Research, 2018, 54, 3788-3808.	1.7	32
18	An E ulerian equation for snow accumulation downstream of an object. Water Resources Research, 2017, 53, 1525-1538.	1.7	5

#	Article	IF	CITATIONS
19	Characterization of Extreme Storm Events Using a Numerical Model–Based Precipitation Maximization Procedure in the Feather, Yuba, and American River Watersheds in California. Journal of Hydrometeorology, 2017, 18, 1413-1423.	0.7	14
20	Regional Hydrologic Impact Assessment of Climate Change on Reservoir Inflows under the CMIP5 Climate Projections. , $2017, \ldots$		3
21	Investigating Safety Effectiveness of Wyoming Snow Fence Installations Along a Rural Mountainous Freeway. Transportation Research Record, 2017, 2613, 8-15.	1.0	9
22	Projected 21st century climate change on snow conditions over Shasta Dam watershed by means of dynamical downscaling. Hydrological Processes, 2017, 31, 2887-2901.	1.1	7
23	Analysis of snowpack dynamics during the spring melt season for a subâ€alpine site using point measurements and numerical modeling. Hydrological Processes, 2017, 31, 4568-4585.	1.1	5
24	A New Formula for Estimating the Threshold Wind Speed for Snow Movement. Journal of Advances in Modeling Earth Systems, 2017, 9, 2514-2525.	1.3	20
25	A Performance Evaluation of Dynamical Downscaling of Precipitation over Northern California. Sustainability, 2017, 9, 1457.	1.6	15
26	Application of WEHY-HCM for Modeling Interactive Atmospheric-Hydrologic Processes at Watershed Scale to a Sparsely Gauged Watershed. Sustainability, 2017, 9, 1554.	1.6	6
27	Projected 21st century climate change on snow conditions over Shasta Dam watershed by means of dynamical downscaling., 2017, 31, 2887.		1
28	Effects of Climate Change on the Stream Flows in Upper Middle Fork Feather River Watershed and on the Groundwater Stresses in Sierra Valley Aquifer Based on Long-Term Dynamical Downscaling. , 2017, , .		0
29	Role of Snowmelt in Determining whether the Maximum Precipitation Always Results in the Maximum Flood. Journal of Hydrologic Engineering - ASCE, 2016, 21, .	0.8	10
30	Reconstruction of Historical Inflows into and Water Supply from Shasta Dam by Coupling Physically Based Hydroclimate Model with Reservoir Operation Model. Journal of Hydrologic Engineering - ASCE, 2016, 21, .	0.8	14
31	Physically Based Estimation of Maximum Precipitation over Three Watersheds in Northern California: Relative Humidity Maximization Method. Journal of Hydrologic Engineering - ASCE, 2015, 20, .	0.8	36
32	Physically Based Estimation of Maximum Precipitation over Three Watersheds in Northern California: Atmospheric Boundary Condition Shifting. Journal of Hydrologic Engineering - ASCE, 2015, 20, .	0.8	46
33	Modeling of Interannual Snow and Ice Storage in High-Altitude Regions by Dynamic Equilibrium Concept. Journal of Hydrologic Engineering - ASCE, 2014, 19, 04014034.	0.8	9
34	A practical formulation of snow surface diffusion by wind for watershedâ€scale applications. Water Resources Research, 2014, 50, 5074-5089.	1.7	9
35	Modelling atmospheric and hydrologic processes for assessment of meadow restoration impact on flow and sediment in a sparsely gauged California watershed. Hydrological Processes, 2014, 28, 3053-3066.	1.1	14
36	The role of irrigation runoff and winter rainfall on dissolved organic carbon loads in an agricultural watershed. Agriculture, Ecosystems and Environment, 2013, 179, 1-10.	2.5	44

#	Article	IF	CITATIONS
37	WEHY-HCM for Modeling Interactive Atmospheric-Hydrologic Processes at Watershed Scale. I: Model Description. Journal of Hydrologic Engineering - ASCE, 2013, 18, 1262-1271.	0.8	40
38	WEHY-HCM for Modeling Interactive Atmospheric-Hydrologic Processes at Watershed Scale. II: Model Application to Ungauged and Sparsely Gauged Watersheds. Journal of Hydrologic Engineering - ASCE, 2013, 18, 1272-1281.	0.8	33
39	Hydrologic impact of regional climate change for the snowfed and glacierfed river basins in the Republic of Tajikistan: hydrological response of flow to climate change. Hydrological Processes, 2013, 27, 4057-4070.	1.1	36
40	Hydrologic impact of regional climate change for the snowâ€fed and glacierâ€fed river basins in the Republic of Tajikistan: statistical downscaling of global climate model projections. Hydrological Processes, 2013, 27, 4071-4090.	1.1	19
41	From deposition to erosion: Spatial and temporal variability of sediment sources, storage, and transport in a small agricultural watershed. Geomorphology, 2011, 132, 272-286.	1.1	43
42	A study of water balances over the Tigris–Euphrates watershed. Physics and Chemistry of the Earth, 2011, 36, 197-203.	1.2	39
43	Physically Based Estimation of Maximum Precipitation over American River Watershed, California. Journal of Hydrologic Engineering - ASCE, 2011, 16, 351-361.	0.8	84
44	Reconstruction of Historical Atmospheric Data by a Hydroclimate Model for the Mekong River Basin. Journal of Hydrologic Engineering - ASCE, 2011, 16, 1030-1039.	0.8	14
45	Coupled Regional Hydroclimate Model and Its Application to the Tigris-Euphrates Basin. Journal of Hydrologic Engineering - ASCE, 2011, 16, 1059-1070.	0.8	22
46	Impact of Water Resources Utilization on the Hydrology of Mesopotamian Marshlands. Journal of Hydrologic Engineering - ASCE, 2011, 16, 1083-1092.	0.8	12
47	Water Balance Study for the Tigris-Euphrates River Basin. Journal of Hydrologic Engineering - ASCE, 2011, 16, 1071-1082.	0.8	15
48	Role of Snow in Runoff Processes in a Subalpine Hillslope: Field Study in the Ward Creek Watershed, Lake Tahoe, California, during 2000 and 2001 Water Years. Journal of Hydrologic Engineering - ASCE, 2011, 16, 521-533.	0.8	16
49	Upscaling of Coupled Land Surface Process Modeling for Heterogeneous Landscapes: Stochastic Approach. Journal of Hydrologic Engineering - ASCE, 2011, 16, 1017-1029.	0.8	4
50	Regional Modeling of Climate Change Impact on Peninsular Malaysia Water Resources. Journal of Hydrologic Engineering - ASCE, 2011, 16, 1040-1049.	0.8	40
51	Corrigendum to "Experimental study of debris capture efficiency of trash racks―[J. Hydro-environ. Res. 3 (3) (2009) 138–147]. Journal of Hydro-Environment Research, 2010, 4, 59.	1.0	0
52	Experimental study of debris capture efficiency of trash racks. Journal of Hydro-Environment Research, 2009, 3, 138-147.	1.0	5
53	Stochastic Upscaling for Snow Accumulation and Melt Processes with PDF Approach. Journal of Hydrologic Engineering - ASCE, 2008, 13, 1103-1118.	0.8	23
54	Estimation of ET Based on Reconstructed Atmospheric Conditions and Remotely Sensed Information Over Last Chance Creek Watershed, Feather River Basin, California., 2007,,.		2

#	Article	IF	CITATION
55	Field observations and numerical model experiments for the snowmelt process at a field site. Advances in Water Resources, 2006, 29, 194-211.	1.7	44
56	Watershed Environmental Hydrology Model: Environmental Module and Its Application to a California Watershed. Journal of Hydrologic Engineering - ASCE, 2006, 11, 261-272.	0.8	58
57	Watershed Environmental Hydrology (WEHY) Model Based on Upscaled Conservation Equations: Hydrologic Module. Journal of Hydrologic Engineering - ASCE, 2004, 9, 450-464.	0.8	92
58	Studies on Runoff Characteristics of the Large-scale Channel Network Using a Physically Based Model Suimon Mizu Shigen Gakkaishi, 2001, 14, 217-228.	0.1	10