Peng Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6141752/publications.pdf Version: 2024-02-01

PENC LIANC

#	Article	IF	CITATIONS
1	Immunostimulatory Cancer-Associated Fibroblast Subpopulations Can Predict Immunotherapy Response in Head and Neck Cancer. Clinical Cancer Research, 2022, 28, 2094-2109.	3.2	60
2	A T cell resilience model associated with response to immunotherapy in multiple tumor types. Nature Medicine, 2022, 28, 1421-1431.	15.2	23
3	Integrin αvβ6–TGFβ–SOX4 Pathway Drives Immune Evasion in Triple-Negative Breast Cancer. Cancer Cell, 2021, 39, 54-67.e9.	7.7	99
4	Therapeutically Increasing MHC-I Expression Potentiates Immune Checkpoint Blockade. Cancer Discovery, 2021, 11, 1524-1541.	7.7	103
5	CARM1 Inhibition Enables Immunotherapy of Resistant Tumors by Dual Action on Tumor Cells and T Cells. Cancer Discovery, 2021, 11, 2050-2071.	7.7	43
6	Tumors exploit FTO-mediated regulation of glycolytic metabolism to evade immune surveillance. Cell Metabolism, 2021, 33, 1221-1233.e11.	7.2	138
7	InÂvivo CRISPR screens identify the E3 ligase Cop1 as a modulator of macrophage infiltration and cancer immunotherapy target. Cell, 2021, 184, 5357-5374.e22.	13.5	79
8	Systematic investigation of cytokine signaling activity at the tissue and single-cell levels. Nature Methods, 2021, 18, 1181-1191.	9.0	82
9	Myeloid-Derived Suppressive Cell Expansion Promotes Melanoma Growth and Autoimmunity by Inhibiting CD40/IL27 Regulation in Macrophages. Cancer Research, 2021, 81, 5977-5990.	0.4	14
10	Cross-Site Concordance Evaluation of Tumor DNA and RNA Sequencing Platforms for the CIMAC-CIDC Network. Clinical Cancer Research, 2021, 27, 5049-5061.	3.2	0
11	Discover immunotherapy biomarkers from single-cell cytometry data. Patterns, 2021, 2, 100384.	3.1	0
12	Cross-Site Concordance Evaluation of Tumor DNA and RNA Sequencing Platforms for the CIMAC-CIDC Network. Clinical Cancer Research, 2021, 27, 5049-5061.	3.2	6
13	Inhibition of MAN2A1 Enhances the Immune Response to Anti–PD-L1 in Human Tumors. Clinical Cancer Research, 2020, 26, 5990-6002.	3.2	28
14	Cytokine and Chemokine Signals of T-Cell Exclusion in Tumors. Frontiers in Immunology, 2020, 11, 594609.	2.2	66
15	Clonal tracing reveals diverse patterns of response to immune checkpoint blockade. Genome Biology, 2020, 21, 263.	3.8	15
16	CRISPR Screens Identify Essential Cell Growth Mediators in BRAF Inhibitor-resistant Melanoma. Genomics, Proteomics and Bioinformatics, 2020, 18, 26-40.	3.0	14
17	Large-scale public data reuse to model immunotherapy response and resistance. Genome Medicine, 2020, 12, 21.	3.6	514
18	Genome-Scale Signatures of Gene Interaction from Compound Screens Predict Clinical Efficacy of Targeted Cancer Therapies. Cell Systems, 2018, 6, 343-354.e5.	2.9	40

Peng Jiang

#	Article	IF	CITATIONS
19	A major chromatin regulator determines resistance of tumor cells to T cell–mediated killing. Science, 2018, 359, 770-775.	6.0	641
20	Improved design and analysis of CRISPR knockout screens. Bioinformatics, 2018, 34, 4095-4101.	1.8	44
21	Estrogen-regulated feedback loop limits the efficacy of estrogen receptor–targeted breast cancer therapy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7869-7878.	3.3	55
22	Big Data Approaches for Modeling Response and Resistance to Cancer Drugs. Annual Review of Biomedical Data Science, 2018, 1, 1-27.	2.8	27
23	Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nature Medicine, 2018, 24, 1550-1558.	15.2	2,791
24	Cistrome Cancer: A Web Resource for Integrative Gene Regulation Modeling in Cancer. Cancer Research, 2017, 77, e19-e22.	0.4	130
25	Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biology, 2016, 17, 174.	3.8	1,768
26	Inference of transcriptional regulation in cancers. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7731-7736.	3.3	84
27	Big data mining yields novel insights on cancer. Nature Genetics, 2015, 47, 103-104.	9.4	64
28	Network analysis of gene essentiality in functional genomics experiments. Genome Biology, 2015, 16, 239.	3.8	50
29	CCAT: Combinatorial Code Analysis Tool for transcriptional regulation. Nucleic Acids Research, 2014, 42, 2833-2847.	6.5	22
30	Computational Assessment of the Cooperativity between RNA Binding Proteins and MicroRNAs in Transcript Decay. PLoS Computational Biology, 2013, 9, e1003075.	1.5	30
31	Functional Interactions Between microRNAs and RNA Binding Proteins. MicroRNA (Shariqah, United) Tj ETQq1 1	0.784314 0.6	rgBT /Overlo
32	The Cutoff protein regulates piRNA cluster expression and piRNA production in the <i>Drosophila</i> germline. EMBO Journal, 2011, 30, 4601-4615.	3.5	110
33	SPICi: a fast clustering algorithm for large biological networks. Bioinformatics, 2010, 26, 1105-1111.	1.8	210
34	<i>In vivo</i> CRISPR Screens Identify E3 Ligase <i>Cop1</i> as a Modulator of Macrophage Infiltration and Cancer Immunotherapy Target. SSRN Electronic Journal, 0, , .	0.4	0