
Scott M Dehm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6141293/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Splicing of a Novel <i>Androgen Receptor</i> Exon Generates a Constitutively Active Androgen Receptor that Mediates Prostate Cancer Therapy Resistance. Cancer Research, 2008, 68, 5469-5477.	0.4	742
2	Androgen Receptor Splice Variants Mediate Enzalutamide Resistance in Castration-Resistant Prostate Cancer Cell Lines. Cancer Research, 2013, 73, 483-489.	0.4	570
3	Genomic Hallmarks and Structural Variation in Metastatic Prostate Cancer. Cell, 2018, 174, 758-769.e9.	13.5	459
4	Alternatively spliced androgen receptor variants. Endocrine-Related Cancer, 2011, 18, R183-R196.	1.6	337
5	Molecular regulation of androgen action in prostate cancer. Journal of Cellular Biochemistry, 2006, 99, 333-344.	1.2	271
6	Structural Alterations Driving Castration-Resistant Prostate Cancer Revealed by Linked-Read Genome Sequencing. Cell, 2018, 174, 433-447.e19.	13.5	258
7	Androgen Receptor Structural and Functional Elements: Role and Regulation in Prostate Cancer. Molecular Endocrinology, 2007, 21, 2855-2863.	3.7	212
8	Inhibition of de novo lipogenesis targets androgen receptor signaling in castration-resistant prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 631-640.	3.3	198
9	The DNA methylation landscape of advanced prostate cancer. Nature Genetics, 2020, 52, 778-789.	9.4	198
10	Androgen Receptor Splice Variants Activate Androgen Receptor Target Genes and Support Aberrant Prostate Cancer Cell Growth Independent of Canonical Androgen Receptor Nuclear Localization Signal. Journal of Biological Chemistry, 2012, 287, 19736-19749.	1.6	194
11	Intragenic Rearrangement and Altered RNA Splicing of the Androgen Receptor in a Cell-Based Model of Prostate Cancer Progression. Cancer Research, 2011, 71, 2108-2117.	0.4	177
12	TALEN-engineered AR gene rearrangements reveal endocrine uncoupling of androgen receptor in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17492-17497.	3.3	147
13	Targeting chromatin binding regulation of constitutively active AR variants to overcome prostate cancer resistance to endocrine-based therapies. Nucleic Acids Research, 2015, 43, 5880-5897.	6.5	136
14	Truncation and constitutive activation of the androgen receptor by diverse genomic rearrangements in prostate cancer. Nature Communications, 2016, 7, 13668.	5.8	134
15	Biologic and clinical significance of androgen receptor variants in castration resistant prostate cancer. Endocrine-Related Cancer, 2014, 21, T87-T103.	1.6	127
16	Androgen Receptor Variant AR-V9 Is Coexpressed with AR-V7 in Prostate Cancer Metastases and Predicts Abiraterone Resistance. Clinical Cancer Research, 2017, 23, 4704-4715.	3.2	117
17	Selectively Targeting the DNA-binding Domain of the Androgen Receptor as a Prospective Therapy for Prostate Cancer. Journal of Biological Chemistry, 2014, 289, 26417-26429.	1.6	107
18	Role of Androgen Receptor Variants in Prostate Cancer: Report from the 2017 Mission Androgen Receptor Variants Meeting. European Urology, 2018, 73, 715-723.	0.9	105

SCOTT M DEHM

#	Article	IF	CITATIONS
19	Ligand-independent Androgen Receptor Activity Is Activation Function-2-independent and Resistant to Antiandrogens in Androgen Refractory Prostate Cancer Cells. Journal of Biological Chemistry, 2006, 281, 27882-27893.	1.6	100
20	Selective Role of an NH2-Terminal WxxLF Motif for Aberrant Androgen Receptor Activation in Androgen Depletion–Independent Prostate Cancer Cells. Cancer Research, 2007, 67, 10067-10077.	0.4	82
21	Patient-derived Models of Abiraterone- and Enzalutamide-resistant Prostate Cancer Reveal Sensitivity to Ribosome-directed Therapy. European Urology, 2018, 74, 562-572.	0.9	80
22	Regulation of androgen receptor signaling in prostate cancer. Expert Review of Anticancer Therapy, 2005, 5, 63-74.	1.1	79
23	Novel Androgen Receptor Coregulator GRHL2 Exerts Both Oncogenic and Antimetastatic Functions in Prostate Cancer. Cancer Research, 2017, 77, 3417-3430.	0.4	79
24	Expression of androgen receptor splice variants in clinical breast cancers. Oncotarget, 2015, 6, 44728-44744.	0.8	77
25	Induction of Prostatic Intraepithelial Neoplasia and Modulation of Androgen Receptor by ETS Variant 1/ETS-Related Protein 81. Cancer Research, 2009, 69, 8102-8110.	0.4	76
26	EPI-001 is a selective peroxisome proliferator-activated receptor-gamma modulator with inhibitory effects on androgen receptor expression and activity in prostate cancer. Oncotarget, 2015, 6, 3811-3824.	0.8	63
27	Androgen Induction of the Androgen Receptor Coactivator Four and a Half LIM Domain Protein-2: Evidence for a Role for Serum Response Factor in Prostate Cancer. Cancer Research, 2007, 67, 10592-10599.	0.4	61
28	Androgen Receptor Rearrangement and Splicing Variants in Resistance to Endocrine Therapies in Prostate Cancer. Endocrinology, 2017, 158, 1533-1542.	1.4	58
29	Androgen Receptor Variants Mediate DNA Repair after Prostate Cancer Irradiation. Cancer Research, 2017, 77, 4745-4754.	0.4	56
30	Diverse <i>AR</i> Gene Rearrangements Mediate Resistance to Androgen Receptor Inhibitors in Metastatic Prostate Cancer. Clinical Cancer Research, 2020, 26, 1965-1976.	3.2	55
31	Targeting a Single Alternative Polyadenylation Site Coordinately Blocks Expression of Androgen Receptor mRNA Splice Variants in Prostate Cancer. Cancer Research, 2017, 77, 5228-5235.	0.4	52
32	Integrated Analysis of Multiple Biomarkers from Circulating Tumor Cells Enabled by Exclusion-Based Analyte Isolation. Clinical Cancer Research, 2017, 23, 746-756.	3.2	52
33	Constitutive Activity of the Androgen Receptor. Advances in Pharmacology, 2014, 70, 327-366.	1.2	47
34	mRNA Splicing Variants: Exploiting Modularity to Outwit Cancer Therapy. Cancer Research, 2013, 73, 5309-5314.	0.4	45
35	Interplay Between Genomic Alterations and Androgen Receptor Signaling During Prostate Cancer Development and Progression. Hormones and Cancer, 2013, 4, 61-69.	4.9	42
36	A novel CRISPR-engineered prostate cancer cell line defines the AR-V transcriptome and identifies PARP inhibitor sensitivities. Nucleic Acids Research, 2019, 47, 5634-5647.	6.5	41

SCOTT M DEHM

#	Article	IF	CITATIONS
37	Choline Kinase Alpha as an Androgen Receptor Chaperone and Prostate Cancer Therapeutic Target. Journal of the National Cancer Institute, 2016, 108, djv371.	3.0	37
38	Prospective Evaluation of Clinical Outcomes Using a Multiplex Liquid Biopsy Targeting Diverse Resistance Mechanisms in Metastatic Prostate Cancer. Journal of Clinical Oncology, 2021, 39, 2926-2937.	0.8	36
39	A pan-cancer transcriptome analysis of exitron splicing identifies novel cancer driver genes and neoepitopes. Molecular Cell, 2021, 81, 2246-2260.e12.	4.5	35
40	FOXO1 binds to the TAU5 motif and inhibits constitutively active androgen receptor splice variants. Prostate, 2013, 73, 1017-1027.	1.2	33
41	Clonal origin and spread of metastatic prostate cancer. Endocrine-Related Cancer, 2016, 23, R207-R217.	1.6	32
42	Prognostic association of plasma cell-free DNA-based androgen receptor amplification and circulating tumor cells in pre-chemotherapy metastatic castration-resistant prostate cancer patients. Prostate Cancer and Prostatic Diseases, 2018, 21, 411-418.	2.0	32
43	iRGDâ€Liposomes Enhance Tumor Delivery and Therapeutic Efficacy of Antisense Oligonucleotide Drugs against Primary Prostate Cancer and Bone Metastasis. Advanced Functional Materials, 2021, 31, 2100478.	7.8	32
44	Androgen Receptor Gene Rearrangements: New Perspectives on Prostate Cancer Progression. Current Drug Targets, 2013, 14, 441-449.	1.0	31
45	Minnelide Inhibits Androgen Dependent, Castration Resistant Prostate Cancer Growth by Decreasing Expression of Androgen Receptor Full Length and Splice Variants. Prostate, 2017, 77, 584-596.	1.2	30
46	Indel detection from DNA and RNA sequencing data with transIndel. BMC Genomics, 2018, 19, 270.	1.2	28
47	Test-Firing Ammunition for Spliceosome Inhibition in Cancer. Clinical Cancer Research, 2013, 19, 6064-6066.	3.2	26
48	Mutational Landscapes of Sequential Prostate Metastases and Matched Patient Derived Xenografts during Enzalutamide Therapy. PLoS ONE, 2015, 10, e0145176.	1.1	26
49	Bypassing Drug Resistance Mechanisms of Prostate Cancer with Small Molecules that Target Androgen Receptor–Chromatin Interactions. Molecular Cancer Therapeutics, 2017, 16, 2281-2291.	1.9	22
50	Androgen Receptor Dependence. Advances in Experimental Medicine and Biology, 2019, 1210, 333-350.	0.8	19
51	Increased transcription and high translation efficiency lead to accumulation of androgen receptor splice variant after androgen deprivation therapy. Cancer Letters, 2021, 504, 37-48.	3.2	17
52	Opposing transcriptional programs of KLF5 and AR emerge during therapy for advanced prostate cancer. Nature Communications, 2021, 12, 6377.	5.8	16
53	A reciprocal feedback between the PDZ binding kinase and androgen receptor drives prostate cancer. Oncogene, 2019, 38, 1136-1150.	2.6	15
54	Exploitation of CD133 for the Targeted Imaging of Lethal Prostate Cancer. Clinical Cancer Research, 2020, 26, 1054-1064.	3.2	15

SCOTT M DEHM

#	Article	IF	CITATIONS
55	Androgen receptor variants: RNA-based mechanisms and therapeutic targets. Human Molecular Genetics, 2020, 29, R19-R26.	1.4	14
56	CK2 targeted RNAi therapeutic delivered via malignant cell-directed tenfibgen nanocapsule: dose and molecular mechanisms of response in xenograft prostate tumors. Oncotarget, 2016, 7, 61789-61805.	0.8	14
57	Second-Generation Jak2 Inhibitors for Advanced Prostate Cancer: Are We Ready for Clinical Development?. Cancers, 2021, 13, 5204.	1.7	13
58	Lessons from tissue compartment-specific analysis of androgen receptor alterations in prostate cancer. Journal of Steroid Biochemistry and Molecular Biology, 2017, 166, 28-37.	1.2	12
59	CK2 Pro-Survival Role in Prostate Cancer Is Mediated via Maintenance and Promotion of Androgen Receptor and NFκB p65 Expression. Pharmaceuticals, 2019, 12, 89.	1.7	12
60	Biomarker-Based Targeting of the Androgen-Androgen Receptor Axis in Advanced Prostate Cancer. Advances in Urology, 2012, 2012, 1-14.	0.6	11
61	Prostate Cancer Foundation Hormone-Sensitive Prostate Cancer Biomarker Working Group Meeting Summary. Urology, 2021, 155, 165-171.	0.5	11
62	Protein Kinase N1 control of androgen-responsive serum response factor action provides rationale for novel prostate cancer treatment strategy. Oncogene, 2019, 38, 4496-4511.	2.6	8
63	SHEAR: sample heterogeneity estimation and assembly by reference. BMC Genomics, 2014, 15, 84.	1.2	7
64	PEG10 Promoter–Driven Expression of Reporter Genes Enables Molecular Imaging of Lethal Prostate Cancer. Cancer Research, 2019, 79, 5668-5680.	0.4	7
65	AR-Variant–Positive CTC: A Surrogate for a Surrogate for Taxane Therapy Outcome?. Clinical Cancer Research, 2019, 25, 1696-1698.	3.2	6
66	Inhibition of androgen receptor transactivation function by adenovirus type 12 E1A undermines prostate cancer cell survival. Prostate, 2018, 78, 1140-1156.	1.2	5
67	AR gene rearrangement analysis in liquid biopsies reveals heterogeneity in lethal prostate cancer. Endocrine-Related Cancer, 2021, 28, 645-655.	1.6	5
68	Exploiting the transcriptional specificity of the alpha-methylacyl-CoA racemase <i>AMACR</i> promoter for the molecular imaging of prostate cancer. Oncotarget, 2018, 9, 36693-36704.	0.8	4
69	SV-HotSpot: detection and visualization of hotspots targeted by structural variants associated with gene expression. Scientific Reports, 2020, 10, 15890.	1.6	3
70	Androgen receptor: Functional roles and facets of regulation in urology. Asian Journal of Urology, 2020, 7, 189-190.	0.5	1
71	Methods for Identifying and Quantifying mRNA Expression of Androgen Receptor Splicing Variants in Prostate Cancer. Methods in Molecular Biology, 2016, 1443, 165-177.	0.4	0