Andrew Ian Jobling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6141177/publications.pdf Version: 2024-02-01

ANDREW JAN JOBLING

#	Article	IF	CITATIONS
1	Treatments targeting autophagy ameliorate the age-related macular degeneration phenotype in mice lacking APOE (apolipoprotein E). Autophagy, 2022, 18, 2368-2384.	4.3	14
2	Subthreshold Nano-Second Laser Treatment and Age-Related Macular Degeneration. Journal of Clinical Medicine, 2021, 10, 484.	1.0	7
3	The Contribution of Microglia to the Development and Maturation of the Visual System. Frontiers in Cellular Neuroscience, 2021, 15, 659843.	1.8	15
4	Piezo2 Knockdown Inhibits Noxious Mechanical Stimulation and NGF-Induced Sensitization in A-Delta Bone Afferent Neurons. Frontiers in Physiology, 2021, 12, 644929.	1.3	23
5	Fractalkine-induced microglial vasoregulation occurs within the retina and is altered early in diabetic retinopathy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	45
6	Potential mechanisms of retinal ganglion cell typeâ€specific vulnerability in glaucoma. Australasian journal of optometry, The, 2020, 103, 562-571.	0.6	15
7	Photoreceptor Degeneration in Pro23His Transgenic Rats (Line 3) Involves Autophagic and Necroptotic Mechanisms. Frontiers in Neuroscience, 2020, 14, 581579.	1.4	12
8	Dorsal-Ventral Differences in Retinal Structure in the Pigmented Royal College of Surgeons Model of Retinal Degeneration. Frontiers in Cellular Neuroscience, 2020, 14, 553708.	1.8	4
9	Fluorescent Labeling and Quantification of Vesicular ATP Release Using Live Cell Imaging. Methods in Molecular Biology, 2020, 2041, 209-221.	0.4	8
10	Animal Models of Diseases of the Retinal Pigment Epithelium. , 2020, , 325-347.		0
11	Animal and Human Models of Retinal Diseases. , 2020, , 590-613.		0
12	The renin-angiotensin system and the retinal neurovascular unit: A role in vascular regulation and disease. Experimental Eye Research, 2019, 187, 107753.	1.2	26
13	Reversibility of Retinal Ganglion Cell Dysfunction From Chronic IOP Elevation. , 2019, 60, 3878.		17
14	Targeting P2X7 receptors as a means for treating retinal disease. Drug Discovery Today, 2019, 24, 1598-1605.	3.2	21
15	Rod Photoreceptor Activation Alone Defines the Release of Dopamine in the Retina. Current Biology, 2019, 29, 763-774.e5.	1.8	43
16	Prophylactic laser in age-related macular degeneration: the past, the present and the future. Eye, 2018, 32, 972-980.	1.1	9
17	The Role of the Microglial Cx3cr1 Pathway in the Postnatal Maturation of Retinal Photoreceptors. Journal of Neuroscience, 2018, 38, 4708-4723.	1.7	34
18	Restorative retinal laser therapy: Present state and future directions. Survey of Ophthalmology, 2018, 63, 307-328.	1.7	45

#	Article	IF	CITATIONS
19	Failure of Autophagy–Lysosomal Pathways in Rod Photoreceptors Causes the Early Retinal Degeneration Phenotype Observed in <i>Cln6^{nclf}</i> Mice. , 2018, 59, 5082.		27
20	The Role of Angiotensin II/AT1 Receptor Signaling in Regulating Retinal Microglial Activation. , 2018, 59, 487.		22
21	Nanosecond Laser Treatment for Age-Related Macular Degeneration Does Not Induce Focal Vision Loss or New Vessel Growth in the Retina. , 2018, 59, 731.		14
22	Loss of Function of P2X7 Receptor Scavenger Activity in Aging Mice. American Journal of Pathology, 2017, 187, 1670-1685.	1.9	34
23	Characterization of the Circumlimbal Suture Model of Chronic IOP Elevation in Mice and Assessment of Changes in Gene Expression of Stretch Sensitive Channels. Frontiers in Neuroscience, 2017, 11, 41.	1.4	39
24	Reduced Scleral TIMP-2 Expression Is Associated With Myopia Development: TIMP-2 Supplementation Stabilizes Scleral Biomarkers of Myopia and Limits Myopia Development. , 2017, 58, 1971.		34
25	Localization and Possible Function of P2X Receptors in Normal and Diseased Retinae. Journal of Ocular Pharmacology and Therapeutics, 2016, 32, 509-517.	0.6	16
26	Inner retinal change in a novel rd1-FTL mouse model of retinal degeneration. Frontiers in Cellular Neuroscience, 2015, 9, 293.	1.8	13
27	Vesicular expression and release of ATP from dopaminergic neurons of the mouse retina and midbrain. Frontiers in Cellular Neuroscience, 2015, 9, 389.	1.8	44
28	Assessment of Retinal Function and Morphology in Aging Ccl2 Knockout Mice. Investigative Ophthalmology and Visual Science, 2015, 56, 1238-1252.	3.3	32
29	Adenosine triphosphateâ€induced photoreceptor death and retinal remodeling in rats. Journal of Comparative Neurology, 2014, 522, 2928-2950.	0.9	33
30	Studying Age-Related Macular Degeneration Using Animal Models. Optometry and Vision Science, 2014, 91, 878-886.	0.6	78
31	The Role of Histamine in the Retina: Studies on the Hdc Knockout Mouse. PLoS ONE, 2014, 9, e116025.	1.1	11
32	Increased Susceptibility to Injury in Older Eyes. Optometry and Vision Science, 2013, 90, 275-281.	0.6	9
33	A Naturally Occurring Mouse Model of Achromatopsia: Characterization of the Mutation in Cone Transducin and Subsequent Retinal Phenotype. , 2013, 54, 3350.		45
34	Susceptibility of Streptozotocin-Induced Diabetic Rat Retinal Function and Ocular Blood Flow to Acute Intraocular Pressure Challenge. , 2013, 54, 2133.		10
35	Electronic restoration of vision in those with photoreceptor degenerations. Australasian journal of optometry, The, 2012, 95, 473-483.	0.6	18
36	Ccl2/Cx3cr1 Knockout Mice Have Inner Retinal Dysfunction but Are Not an Accelerated Model of AMD. , 2012, 53, 7833.		53

Andrew Ian Jobling

#	Article	IF	CITATIONS
37	Retinal dysfunction, photoreceptor protein dysregulation and neuronal remodelling in the R6/1 mouse model of Huntington's disease. Neurobiology of Disease, 2012, 45, 887-896.	2.1	37
38	Alternative pathways in the development of diabetic retinopathy: the reninâ€angiotensin and kallikreinâ€kinin systems. Australasian journal of optometry, The, 2012, 95, 282-289.	0.6	15
39	The Role of the P2X7 Receptor in the Retina: Cell Signalling and Dysfunction. Advances in Experimental Medicine and Biology, 2012, 723, 813-819.	0.8	7
40	Early Inner Retinal Astrocyte Dysfunction during Diabetes and Development of Hypoxia, Retinal Stress, and Neuronal Functional Loss. , 2011, 52, 9316.		140
41	Animal Models of Retinal Disease. Progress in Molecular Biology and Translational Science, 2011, 100, 211-286.	0.9	89
42	Inhibition of Matrix Metalloproteinase Activity in the Chick Sclera and Its Effect on Myopia Development. , 2010, 51, 2865.		11
43	Biomechanics of the Sclera in Myopia: Extracellular and Cellular Factors. Optometry and Vision Science, 2009, 86, E23-E30.	0.6	227
44	Retinal and choroidal TGF- $\hat{1}^2$ in the tree shrew model of myopia: Isoform expression, activation and effects on function. Experimental Eye Research, 2009, 88, 458-466.	1.2	74
45	Regulation of Scleral Cell Contraction by Transforming Growth Factor-Î ² and Stress. Journal of Biological Chemistry, 2009, 284, 2072-2079.	1.6	46
46	Expression of Collagen-Binding Integrin Receptors in the Mammalian Sclera and Their Regulation during the Development of Myopia. , 2006, 47, 4674.		60
47	Isoform-specific Changes in Scleral Transforming Growth Factor-β Expression and the Regulation of Collagen Synthesis during Myopia Progression. Journal of Biological Chemistry, 2004, 279, 18121-18126.	1.6	124
48	Localization and expression of the glutamate transporter, excitatory amino acid transporter 4, within astrocytes of the rat retina. Cell and Tissue Research, 2004, 315, 305-310.	1.5	55
49	What causes steroid cataracts? A review of steroidâ€induced posterior subcapsular cataracts. Australasian journal of optometry, The, 2002, 85, 61-75.	0.6	148
50	Is there a Glucocorticoid Receptor in the Bovine Lens?. Experimental Eye Research, 2001, 72, 687-694.	1.2	21
51	Steroid adduct formation with lens crystallins. Australasian journal of optometry, The, 1999, 82, 130-136.	0.6	7
52	Distribution of proteins across the porcine lens. Australasian journal of optometry, The, 1995, 78, 87-92.	0.6	5
53	Rod Photoreceptor Activation Alone Defines the Release of Dopamine in the Retina. SSRN Electronic Journal, O, , .	0.4	0