
Manuel Martinez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6140828/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydroxynitrile lyase defends Arabidopsis against <i>Tetranychus urticae</i> . Plant Physiology, 2022, 189, 2244-2258.	2.3	9
2	Plant Kinases in the Perception and Signaling Networks Associated With Arthropod Herbivory. Frontiers in Plant Science, 2022, 13, .	1.7	5
3	Comparative transcriptomics reveals hidden issues in the plant response to arthropod herbivores. Journal of Integrative Plant Biology, 2021, 63, 312-326.	4.1	19
4	Repression of barley cathepsins, HvPap-19 and HvPap-1, differentially alters grain composition and delays germination. Journal of Experimental Botany, 2021, 72, 3474-3485.	2.4	4
5	Disentangling transcriptional responses in plant defense against arthropod herbivores. Scientific Reports, 2021, 11, 12996.	1.6	9
6	The co-chaperone HOP3 participates in jasmonic acid signaling by regulating CORONATINE-INSENSITIVE 1 activity. Plant Physiology, 2021, 187, 1679-1689.	2.3	7
7	Spider mite egg extract modifies Arabidopsis response to future infestations. Scientific Reports, 2021, 11, 17692.	1.6	5
8	Saving time maintaining reliability: a new method for quantification of Tetranychus urticae damage in Arabidopsis whole rosettes. BMC Plant Biology, 2020, 20, 397.	1.6	11
9	Factores de riesgo y protección del estrés traumático secundario en los cuidados intensivos: un estudio exploratorio en un hospital terciario de Madrid. Medicina Intensiva, 2020, 44, 420-428.	0.4	2
10	Plant Defenses Against Tetranychus urticae: Mind the Gaps. Plants, 2020, 9, 464.	1.6	43
11	The Price of the Induced Defense Against Pests: A Meta-Analysis. Frontiers in Plant Science, 2020, 11, 615122.	1.7	20
12	Plant Defenses Against Pests Driven by a Bidirectional Promoter. Frontiers in Plant Science, 2019, 10, 930.	1.7	6
13	Editorial for Special Issue "Molecular Advances in Wheat and Barley― International Journal of Molecular Sciences, 2019, 20, 3501.	1.8	10
14	Plant Proteases: From Key Enzymes in Germination to Allies for Fighting Human Gluten-Related Disorders. Frontiers in Plant Science, 2019, 10, 721.	1.7	30
15	Insights on the Proteases Involved in Barley and Wheat Grain Germination. International Journal of Molecular Sciences, 2019, 20, 2087.	1.8	31
16	An Arabidopsis TIR-Lectin Two-Domain Protein Confers Defense Properties against <i>Tetranychus urticae</i> . Plant Physiology, 2019, 179, 1298-1314.	2.3	38
17	Repression of drought-induced cysteine-protease genes alters barley leaf structure and responses to abiotic and biotic stresses. Journal of Experimental Botany, 2019, 70, 2143-2155.	2.4	26
18	Silencing barley cystatins HvCPlâ€2 and HvCPlâ€4 specifically modifies leaf responses to drought stress. Plant, Cell and Environment, 2018, 41, 1776-1790.	2.8	20

#	Article	IF	CITATIONS
19	Host plant use by two distinct lineages of the tomato red spider mite, Tetranychus evansi, differing in their distribution range. Journal of Pest Science, 2018, 91, 169-179.	1.9	14
20	Vacuolar processing enzyme 4 contributes to maternal control of grain size in barley by executing programmed cell death in the pericarp. New Phytologist, 2018, 218, 1127-1142.	3.5	30
21	Differential response of silencing HvIcy2 barley plants against Magnaporthe oryzae infection and light deprivation. BMC Plant Biology, 2018, 18, 337.	1.6	5
22	Arabidopsis response to the spider mite Tetranychus urticae depends on the regulation of reactive oxygen species homeostasis. Scientific Reports, 2018, 8, 9432.	1.6	33
23	Arabidopsis Kunitz Trypsin Inhibitors in Defense Against Spider Mites. Frontiers in Plant Science, 2018, 9, 986.	1.7	47
24	Dehydration Stress Contributes to the Enhancement of Plant Defense Response and Mite Performance on Barley. Frontiers in Plant Science, 2018, 9, 458.	1.7	23
25	Overexpression of HvIcy6 in Barley Enhances Resistance against Tetranychus urticae and Entails Partial Transcriptomic Reprogramming. International Journal of Molecular Sciences, 2018, 19, 697.	1.8	21
26	Plant Perception and Short-Term Responses to Phytophagous Insects and Mites. International Journal of Molecular Sciences, 2018, 19, 1356.	1.8	70
27	Senescence-Associated Genes in Response to Abiotic/Biotic Stresses. Progress in Botany Fortschritte Der Botanik, 2017, , 89-109.	0.1	5
28	MATI, a Novel Protein Involved in the Regulation of Herbivore-Associated Signaling Pathways. Frontiers in Plant Science, 2017, 8, 975.	1.7	42
29	HvPap-1 C1A Protease Participates Differentially in the Barley Response to a Pathogen and an Herbivore. Frontiers in Plant Science, 2017, 8, 1585.	1.7	18
30	Insights into the molecular evolution of peptidase inhibitors in arthropods. PLoS ONE, 2017, 12, e0187643.	1.1	1
31	Plant senescence and proteolysis: two processes with one destiny. Genetics and Molecular Biology, 2016, 39, 329-338.	0.6	124
32	Phytocystatins: Defense Proteins against Phytophagous Insects and Acari. International Journal of Molecular Sciences, 2016, 17, 1747.	1.8	65
33	HvPap-1 C1A protease actively participates in barley proteolysis mediated by abiotic stresses. Journal of Experimental Botany, 2016, 67, 4297-4310.	2.4	24
34	A Developmental Switch of Gene Expression in the Barley Seed Mediated by HvVP1 (Viviparous-1) and HvGAMYB Interactions. Plant Physiology, 2016, 170, 2146-2158.	2.3	38
35	HvPap-1 C1A Protease and HvCPI-2 Cystatin Contribute to Barley Grain Filling and Germination. Plant Physiology, 2016, 170, 2511-2524.	2.3	33
36	Synchronizing atomic force microscopy force mode and fluorescence microscopy in real time for immune cell stimulation and activation studies. Ultramicroscopy, 2016, 160, 168-181.	0.8	29

#	Article	IF	CITATIONS
37	Computational Tools for Genomic Studies in Plants. Current Genomics, 2016, 17, 509-514.	0.7	9
38	Tomato Whole Genome Transcriptional Response to <i>Tetranychus urticae</i> Identifies Divergence of Spider Mite-Induced Responses Between Tomato and <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2015, 28, 343-361.	1.4	90
39	Digestive proteases in bodies and faeces of the two-spotted spider mite, Tetranychus urticae. Journal of Insect Physiology, 2015, 78, 69-77.	0.9	71
40	Inhibitory Properties of Cysteine Protease Pro-Peptides from Barley Confer Resistance to Spider Mite Feeding. PLoS ONE, 2015, 10, e0128323.	1.1	32
41	Plant protein peptidase inhibitors: an evolutionary overview based on comparative genomics. BMC Genomics, 2014, 15, 812.	1.2	58
42	C1A cysteine protease–cystatin interactions in leaf senescence. Journal of Experimental Botany, 2014, 65, 3825-3833.	2.4	102
43	Responses to Phytophagous Arthropods. Biotechnology in Agriculture and Forestry, 2014, , 237-248.	0.2	1
44	Understanding plant defence responses against herbivore attacks: an essential first step towards the development of sustainable resistance against pests. Transgenic Research, 2013, 22, 697-708.	1.3	75
45	FROM PLANT GENOMES TO PROTEIN FAMILIES: COMPUTATIONAL TOOLS. Computational and Structural Biotechnology Journal, 2013, 8, e201307001.	1.9	7
46	Plant C1A Cysteine Peptidases in Germination and Senescence. , 2013, , 1852-1858.		10
47	Phylogenetically distant barley legumains have a role in both seed and vegetative tissues. Journal of Experimental Botany, 2013, 64, 2929-2941.	2.4	45
48	A cathepsin F-like peptidase involved in barley grain protein mobilization, HvPap-1, is modulated by its own propeptide and by cystatins. Journal of Experimental Botany, 2012, 63, 4615-4629.	2.4	32
49	Cysteine peptidases and their inhibitors in Tetranychus urticae: a comparative genomic approach. BMC Genomics, 2012, 13, 307.	1.2	38
50	Structural Basis for Specificity of Propeptide-Enzyme Interaction in Barley C1A Cysteine Peptidases. PLoS ONE, 2012, 7, e37234.	1.1	15
51	Co-evolution of Genes for Specification in Arthropod-Plant Interactions: A Bioinformatic Analysis in Plant and Arthropod Genomes. , 2012, , 1-14.		Ο
52	C1A cysteineâ€proteases and their inhibitors in plants. Physiologia Plantarum, 2012, 145, 85-94.	2.6	107
53	Gene Pyramiding of Peptidase Inhibitors Enhances Plant Resistance to the Spider Mite Tetranychus urticae. PLoS ONE, 2012, 7, e43011.	1.1	96
54	Plant protein-coding gene families: emerging bioinformatics approaches. Trends in Plant Science, 2011, 16, 558-567.	4.3	31

#	Article	IF	CITATIONS
55	The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature, 2011, 479, 487-492.	13.7	897
56	Differential in vitro and in vivo effect of barley cysteine and serine protease inhibitors on phytopathogenic microorganisms. Plant Physiology and Biochemistry, 2011, 49, 1191-1200.	2.8	23
57	A barley cysteine-proteinase inhibitor reduces the performance of two aphid species in artificial diets and transgenic Arabidopsis plants. Transgenic Research, 2011, 20, 305-319.	1.3	91
58	Expression of a barley cystatin gene in maize enhances resistance against phytophagous mites by altering their cysteine-proteases. Plant Cell Reports, 2011, 30, 101-112.	2.8	83
59	Clan CD of cysteine peptidases as an example of evolutionary divergences in related protein families across plant clades. Gene, 2010, 449, 59-69.	1.0	15
60	Leishmania infantum: Antiproliferative effect of recombinant plant cystatins on promastigotes and intracellular amastigotes estimated by direct counting and real-time PCR. Experimental Parasitology, 2009, 123, 341-346.	0.5	9
61	Comparative analysis of immunoglobulin polymerase chain reaction and flow cytometry in fine needle aspiration biopsy differential diagnosis of nonâ€Hodgkin Bâ€cell lymphoid malignancies. Diagnostic Cytopathology, 2009, 37, 647-653.	0.5	14
62	Characterization of the Entire Cystatin Gene Family in Barley and Their Target Cathepsin L-Like Cysteine-Proteases, Partners in the Hordein Mobilization during Seed Germination Â. Plant Physiology, 2009, 151, 1531-1545.	2.3	133
63	The origin and evolution of plant cystatins and their target cysteine proteinases indicate a complex functional relationship. BMC Evolutionary Biology, 2008, 8, 198.	3.2	129
64	Carboxy terminal extended phytocystatins are bifunctional inhibitors of papain and legumain cysteine proteinases. FEBS Letters, 2007, 581, 2914-2918.	1.3	96
65	Effects of potato plants expressing a barley cystatin on the predatory bug Podisus maculiventris via herbivorous prey feeding on the plant. Transgenic Research, 2007, 16, 1-13.	1.3	74
66	The family of DOF transcription factors: from green unicellular algae to vascular plants. Molecular Genetics and Genomics, 2007, 277, 379-390.	1.0	140
67	Ternary complex formation between HvMYBS3 and other factors involved in transcriptional control in barley seeds. Plant Journal, 2006, 47, 269-281.	2.8	74
68	HvMCB1, a R1MYB transcription factor from barley with antagonistic regulatory functions during seed development and germination. Plant Journal, 2006, 45, 17-30.	2.8	66
69	Structural and functional diversity within the cystatin gene family of Hordeum vulgare. Journal of Experimental Botany, 2006, 57, 4245-4255.	2.4	42
70	The DOF protein, SAD, interacts with GAMYB in plant nuclei and activates transcription of endosperm-specific genes during barley seed development. Plant Journal, 2005, 42, 652-662.	2.8	127
71	Comparative phylogenetic analysis of cystatin gene families from arabidopsis, rice and barley. Molecular Genetics and Genomics, 2005, 273, 423-432.	1.0	90
72	The barley cystatin gene (Icy) is regulated by DOF transcription factors in aleurone cells upon germination. Journal of Experimental Botany, 2005, 56, 547-556.	2.4	38

#	Article	IF	CITATIONS
73	The strawberry gene Cyf1 encodes a phytocystatin with antifungal properties. Journal of Experimental Botany, 2005, 56, 1821-1829.	2.4	82
74	Synaptic behaviour of hexaploid wheat haploids with different effectiveness of the diploidizing mechanism. Cytogenetic and Genome Research, 2005, 109, 210-214.	0.6	22
75	A single primer pair immunoglobulin polymerase chain reaction assay as a useful tool in fine-needle aspiration biopsy differential diagnosis of lymphoid malignancies. Cancer, 2003, 99, 180-185.	2.0	11
76	SAD: a new DOF protein from barley that activates transcription of a cathepsin B-like thiol protease gene in the aleurone of germinating seeds. Plant Journal, 2003, 33, 329-340.	2.8	80
77	A cathepsin B-like cysteine protease gene from Hordeum vulgare (gene CatB) induced by GA in aleurone cells is under circadian control in leaves. Journal of Experimental Botany, 2003, 54, 951-959.	2.4	50
78	Inhibition of Plant-Pathogenic Fungi by the Barley Cystatin Hv-CPI (Gene Icy) Is Not Associated with Its Cysteine-Proteinase Inhibitory Properties. Molecular Plant-Microbe Interactions, 2003, 16, 876-883.	1.4	68
79	CAMYB and BPBF transcriptional factors in the control of gene expression during development of barley endosperm , 2003, , 77-84.		0
80	The GAMYB protein from barley interacts with the DOF transcription factor BPBF and activates endosperm-specific genes during seed development. Plant Journal, 2002, 29, 453-464.	2.8	208
81	The Ph1 and Ph2 loci play different roles in the synaptic behaviour of hexaploid wheat Triticum aestivum. Theoretical and Applied Genetics, 2001, 103, 398-405.	1.8	53
82	The synaptic behaviour of Triticum turgidum with variable doses of the Ph1 locus. Theoretical and Applied Genetics, 2001, 102, 751-758.	1.8	39
83	The synaptic behaviour of the wild forms of Triticum turgidum and T. timopheevii. Genome, 2001, 44, 517-522.	0.9	5
84	The synaptic behaviour of the wild forms of <i>Triticum turgidum</i> and <i>T. timopheevii</i> . Genome, 2001, 44, 517-522.	0.9	3
85	Differences in the synaptic pattern in two autotetraploid cultivars of rye with different quadrivalent frequencies at metaphase I. Genome, 1999, 42, 662-667.	0.9	1
86	Synaptic behaviour of the tetraploid wheat Triticum timopheevii. Theoretical and Applied Genetics, 1996, 93, 1139-1144.	1.8	20
87	Synaptic abnormalities in spread nuclei of <i>Secale</i> . II. <i>Secale vavilovii</i> . Genome, 1995, 38, 772-779.	0.9	1
88	Further insights on chromosomal pairing of autopolyploids: a triploid and tetraploids of rye. Chromosoma, 1995, 104, 298-307.	1.0	22
89	Synaptic abnormalities in spread nuclei of Secale. I. Inbred lines. Genome, 1995, 38, 764-771.	0.9	4