
Meritxell Teixido

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6140274/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Blood–brain barrier shuttle peptides: an emerging paradigm for brain delivery. Chemical Society Reviews, 2016, 45, 4690-4707.	38.1	318
2	Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials, 2012, 33, 7194-7205.	11.4	220
3	Solid-phase synthesis and characterization of N-methyl-rich peptides. Chemical Biology and Drug Design, 2008, 65, 153-166.	1.1	107
4	Applying the Retroâ€Enantio Approach To Obtain a Peptide Capable of Overcoming the Blood–Brain Barrier. Angewandte Chemie - International Edition, 2015, 54, 3967-3972.	13.8	96
5	Diketopiperazines as a Tool for the Study of Transport across the Bloodâ^'Brain Barrier (BBB) and Their Potential Use as BBB-Shuttles. Journal of the American Chemical Society, 2007, 129, 11802-11813.	13.7	92
6	Baicalin, a prodrug able to reach the CNS, is a prolyl oligopeptidase inhibitor. Bioorganic and Medicinal Chemistry, 2008, 16, 7516-7524.	3.0	81
7	Shuttleâ€Mediated Drug Delivery to the Brain. Angewandte Chemie - International Edition, 2011, 50, 7998-8014.	13.8	74
8	PEG-PGA enveloped octaarginine-peptide nanocomplexes: An oral peptide delivery strategy. Journal of Controlled Release, 2018, 276, 125-139.	9.9	70
9	Effect of the efflux pump inhibitor Phe-Arg-Â-naphthylamide on the MIC values of the quinolones, tetracycline and chloramphenicol, in Escherichia coli isolates of different origin. Journal of Antimicrobial Chemotherapy, 2004, 53, 544-545.	3.0	69
10	Design, Synthesis and Characterization of a New Anionic Cellâ€Penetrating Peptide: SAP(E). ChemBioChem, 2011, 12, 896-903.	2.6	66
11	MiniApâ€4: A Venomâ€Inspired Peptidomimetic for Brain Delivery. Angewandte Chemie - International Edition, 2016, 55, 572-575.	13.8	66
12	Solid-phase-assisted synthesis of targeting peptide–PEG–oligo(ethane amino)amides for receptor-mediated gene delivery. Organic and Biomolecular Chemistry, 2012, 10, 3258.	2.8	65
13	<i>N</i> -Methyl Phenylalanine-Rich Peptides as Highly Versatile Bloodâ^'Brain Barrier Shuttles. Journal of Medicinal Chemistry, 2010, 53, 2354-2363.	6.4	64
14	Jumping Hurdles: Peptides Able To Overcome Biological Barriers. Accounts of Chemical Research, 2017, 50, 1847-1854.	15.6	62
15	Toward an Optimal Bloodâ^'Brain Barrier Shuttle by Synthesis and Evaluation of Peptide Libraries. Journal of Medicinal Chemistry, 2008, 51, 4881-4889.	6.4	59
16	Building Cell Selectivity into CPP-Mediated Strategies. Pharmaceuticals, 2010, 3, 1456-1490.	3.8	46
17	Lipid Bilayer Crossing—The Gate of Symmetry. Water-Soluble Phenylproline-Based Blood-Brain Barrier Shuttles. Journal of the American Chemical Society, 2015, 137, 7357-7364.	13.7	44
18	Blood–brain barrier peptide shuttles. Current Opinion in Chemical Biology, 2017, 38, 134-140.	6.1	43

MERITXELL TEIXIDO

#	Article	IF	CITATIONS
19	From venoms to BBB shuttles: Synthesis and blood–brain barrier transport assessment of apamin and a nontoxic analog. Biopolymers, 2013, 100, 675-686.	2.4	42
20	Branched BBB-shuttle peptides: chemoselective modification of proteins to enhance blood–brain barrier transport. Chemical Science, 2018, 9, 8409-8415.	7.4	39
21	Bifunctional Peptide-Based Opioid Agonist–Nociceptin Antagonist Ligands for Dual Treatment of Acute and Neuropathic Pain. Journal of Medicinal Chemistry, 2016, 59, 3777-3792.	6.4	36
22	The role of peptides in bloodâ€brain barrier nanotechnology. Journal of Peptide Science, 2008, 14, 163-173.	1.4	30
23	Novel Peptidyl Aryl Vinyl Sulfones as Highly Potent and Selective Inhibitors of Cathepsinsâ€L and B. ChemMedChem, 2010, 5, 1556-1567.	3.2	27
24	Immunosilencing peptides by stereochemical inversion and sequence reversal: retro-D-peptides. Scientific Reports, 2018, 8, 6446.	3.3	26
25	Trifluoromethylated proline analogues as efficient tools to enhance the hydrophobicity and to promote passive diffusion transport of the <scp>l</scp> -prolyl- <scp>l</scp> -leucyl glycinamide (PLC) tripeptide. RSC Advances, 2018, 8, 14597-14602.	3.6	25
26	Bicyclic Homodetic Peptide Libraries:  Comparison of Synthetic Strategies for Their Solid-Phase Synthesis. ACS Combinatorial Science, 2003, 5, 760-768.	3.3	23
27	Phage display as a tool to discover blood–brain barrier (<scp>BBB</scp>)â€shuttle peptides: panning against a human <scp>BBB</scp> cellular model. Biopolymers, 2017, 108, e22928.	2.4	23
28	Peptide Mediated Brain Delivery of Nano- and Submicroparticles: A Synergistic Approach. Current Pharmaceutical Design, 2018, 24, 1366-1376.	1.9	23
29	Peptide based drug delivery systems to the brain. Nano Express, 2020, 1, 012002.	2.4	22
30	â€~À la Carte' Peptide Shuttles: Tools to Increase Their Passage across the Blood–Brain Barrier. ChemMedChem, 2014, 9, 1594-1601.	3.2	21
31	Development of a Genetic Algorithm to Design and Identify Peptides that can Cross the Blood-Brain Barrier. QSAR and Combinatorial Science, 2003, 22, 745-753.	1.4	19
32	Sequence-activity relationship, and mechanism of action of mastoparan analogues against extended-drug resistant Acinetobacter baumannii. European Journal of Medicinal Chemistry, 2015, 101, 34-40.	5.5	19
33	Evolutionary combinatorial chemistry, a novel tool for SAR studies on peptide transport across the blood-brain barrier. Part 2. Design, synthesis and evaluation of a first generation of peptides. Journal of Peptide Science, 2005, 11, 789-804.	1.4	18
34	From venoms to BBB-shuttles. MiniCTX3: a molecular vector derived from scorpion venom. Chemical Communications, 2018, 54, 12738-12741.	4.1	18
35	Blocking EGFR Activation with Antiâ€EGF Nanobodies via Two Distinct Molecular Recognition Mechanisms. Angewandte Chemie - International Edition, 2018, 57, 13843-13847.	13.8	18
36	Amphiphilic Polymeric Nanoparticles Modified with a Retro-Enantio Peptide Shuttle Target the Brain of Mice. Chemistry of Materials, 2020, 32, 7679-7693.	6.7	18

MERITXELL TEIXIDO

#	Article	IF	CITATIONS
37	Selenomethionine Incorporation into Amyloid Sequences Regulates Fibrillogenesis and Toxicity. PLoS ONE, 2011, 6, e27999.	2.5	17
38	Chemically synthesized peptide libraries as a new source of BBB shuttles. Use of mass spectrometry for peptide identification. Journal of Peptide Science, 2016, 22, 577-591.	1.4	15
39	Fine-tuning the physicochemical properties of peptide-based blood–brain barrier shuttles. Bioorganic and Medicinal Chemistry, 2018, 26, 2099-2106.	3.0	15
40	Amphiphilic Polymeric Nanoparticles Modified with a Protease-Resistant Peptide Shuttle for the Delivery of SN-38 in Diffuse Intrinsic Pontine Glioma. ACS Applied Nano Materials, 2021, 4, 1314-1329.	5.0	15
41	Cyclic Dipeptide Shuttles as a Novel Skin Penetration Enhancement Approach: Preliminary Evaluation with Diclofenac. PLoS ONE, 2016, 11, e0160973.	2.5	14
42	Just passing through. Nature Chemistry, 2017, 9, 727-728.	13.6	14
43	Intracellular Fate of Peptide-Mediated Delivered Cargoes. Current Pharmaceutical Design, 2013, 19, 2924-2942.	1.9	14
44	A Pyridinium-substituted Analog of the TRH-like Tripeptide pGlu-Glu- Pro-NH2 and its Prodrugs as Central Nervous System Agents. Medicinal Chemistry, 2005, 1, 141-152.	1.5	14
45	Differential Neuroprotective Effects of 5â€2-Deoxy-5â€2-Methylthioadenosine. PLoS ONE, 2014, 9, e90671.	2.5	13
46	Bromotryptophans and their incorporation in cyclic and bicyclic privileged peptides. Biopolymers, 2018, 109, e23112.	2.4	12
47	<scp>d</scp> â€Polyarginine Lipopeptides as Intestinal Permeation Enhancers. ChemMedChem, 2018, 13, 2045-2052.	3.2	11
48	Combined Use of Oligopeptides, Fragment Libraries, and Natural Compounds: A Comprehensive Approach To Sample the Druggability of Vascular Endothelial Growth Factor. ChemMedChem, 2016, 11, 928-939.	3.2	10
49	Bike peptides: a ride through the membrane. Journal of Peptide Science, 2017, 23, 294-302.	1.4	9
50	Dual system for the central nervous system targeting and bloodâ€brain barrier transport of a selective prolyl oligopeptidase inhibitor. Biopolymers, 2013, 100, 662-674.	2.4	8
51	Synthesis and inÂvitro , ex-vivo and inÂvivo activity of hybrid compounds linking a potent ROS and RNS scavenger activity with diverse substrates addressed to pass across the blood-brain barrier. European Journal of Medicinal Chemistry, 2016, 123, 788-802.	5.5	8
52	Indoloazepinoneâ€Constrained Oligomers as Cellâ€Penetrating and Blood–Brainâ€Barrierâ€Permeating Compounds. ChemBioChem, 2018, 19, 696-705.	2.6	8
53	HAI Peptide and Backbone Analogs—Validation and Enhancement of Biostability and Bioactivity of BBB Shuttles. Scientific Reports, 2018, 8, 17932.	3.3	8
54	Development of Brain Targeting Peptide Based MMP-9 Inhibiting Nanoparticles for the Treatment of Brain Diseases with Elevated MMP-9 Activity. Journal of Pharmaceutical Sciences, 2020, 109, 3134-3144.	3.3	8

MERITXELL TEIXIDO

#	Article	IF	CITATIONS
55	Exploration of the One-Bead One-Compound Methodology for the Design of Prolyl Oligopeptidase Substrates. PLoS ONE, 2009, 4, e6222.	2.5	7
56	Exploratory neuropharmacological evaluation of a conformationally constrained thyrotropin-releasing hormone analogue. Brain Research Bulletin, 2007, 73, 103-107.	3.0	5
57	Expanding the MiniApâ€4 BBBâ€shuttle family: Evaluation of proline <i>cis</i> â€ <i>trans</i> ratio as tool to fineâ€ŧune transport. Journal of Peptide Science, 2019, 25, e3172.	1.4	5
58	A MALDI-TOF-based Method for Studying the Transport of BBB Shuttles—Enhancing Sensitivity and Versatility of Cell-Based In Vitro Transport Models. Scientific Reports, 2019, 9, 4875.	3.3	5
59	A novel family of diketopiperazines as a tool for the study of transport across the blood-brain barrier (BBB) and their potential use as BBB-shuttles Advances in Experimental Medicine and Biology, 2009, 611, 227-228.	1.6	3
60	Chemical Composition and Inhibitory Effects of Hypericum brasiliense and H. connatum on Prolyl Oligopeptidase and Acetylcholinesterase Activities. Medicinal Chemistry, 2016, 12, 457-463.	1.5	3
61	Does the Solid-Phase Synthesis of a Tetrapeptide Represent a Challenge at the Onset of the XXI Century? The Case of Cyclo [(3R)-3-hydroxydecanoyl-I-seryl-(3R)-3-hydroxydecanoyl-I-seryl]. International Journal of Peptide Research and Therapeutics, 2007, 13, 313-327.	1.9	2
62	The Inclusion of a Matrix Metalloproteinase-9 Responsive Sequence in Self-assembled Peptide-based Brain-Targeting Nanoparticles Improves the Efficiency of Nanoparticles Crossing the Blood-Brain Barrier at Elevated MMP-9 Levels. Journal of Pharmaceutical Sciences, 2021, 110, 1349-1364.	3.3	2
63	Efficient Synthesis of Norbuprenorphines Coupled with Enkephalins and Investigation of Their Permeability. Iranian Journal of Pharmaceutical Research, 2019, 18, 1277-1287.	0.5	2
64	â€~À La Carte' Cyclic Hexapeptides: Fine Tuning Conformational Diversity while Preserving the Peptide Scaffold ChemistrySelect, 2018, 3, 2343-2351.	1.5	0