Steffen Zacharias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6140097/publications.pdf

Version: 2024-02-01

44 papers

2,412 citations

293460 24 h-index 286692 43 g-index

75 all docs

75 docs citations

75 times ranked 4164 citing authors

#	Article	IF	CITATIONS
1	COSMOS-Europe: a European network of cosmic-ray neutron soil moisture sensors. Earth System Science Data, 2022, 14, 1125-1151.	3.7	33
2	Remote Sensing of Geomorphodiversity Linked to Biodiversityâ€"Part III: Traits, Processes and Remote Sensing Characteristics. Remote Sensing, 2022, 14, 2279.	1.8	13
3	Building a Global Ecosystem Research Infrastructure to Address Global Grand Challenges for Macrosystem Ecology. Earth's Future, 2022, 10, .	2.4	10
4	Soil moisture observation in a forested headwater catchment: combining a dense cosmic-ray neutron sensor network with roving and hydrogravimetry at the TERENO site WA¼stebach. Earth System Science Data, 2022, 14, 2501-2519.	3.7	9
5	<i>STH-net:</i> a soil monitoring network for process-based hydrological modelling from the pedon to the hillslope scale. Earth System Science Data, 2021, 13, 2529-2539.	3.7	2
6	Assessing the biogeographical and socio-ecological representativeness of the ILTER site network. Ecological Indicators, 2021, 127, 107785.	2.6	17
7	Reanalysis in Earth System Science: Toward Terrestrial Ecosystem Reanalysis. Reviews of Geophysics, 2021, 59, e2020RG000715.	9.0	24
8	Neutrons on Rails: Transregional Monitoring of Soil Moisture and Snow Water Equivalent. Geophysical Research Letters, 2021, 48, .	1.5	14
9	Linking the Remote Sensing of Geodiversity and Traits Relevant to Biodiversityâ€"Part II: Geomorphology, Terrain and Surfaces. Remote Sensing, 2020, 12, 3690.	1.8	20
10	A dense network of cosmic-ray neutron sensors for soil moisture observation in a highly instrumented pre-Alpine headwater catchment in Germany. Earth System Science Data, 2020, 12, 2289-2309.	3.7	44
11	Can Drip Irrigation be Scheduled with Cosmicâ€Ray Neutron Sensing?. Vadose Zone Journal, 2019, 18, 190053.	1.3	22
12	Linking Remote Sensing and Geodiversity and Their Traits Relevant to Biodiversity—Part I: Soil Characteristics. Remote Sensing, 2019, 11, 2356.	1.8	46
13	Long-term environmental monitoring infrastructures in Europe: observations, measurements, scales, and socio-ecological representativeness. Science of the Total Environment, 2018, 624, 968-978.	3.9	45
14	The next generation of site-based long-term ecological monitoring: Linking essential biodiversity variables and ecosystem integrity. Science of the Total Environment, 2018, 613-614, 1376-1384.	3.9	143
15	Intercomparison of cosmic-ray neutron sensors and water balance monitoring in an urban environment. Geoscientific Instrumentation, Methods and Data Systems, 2018, 7, 83-99.	0.6	44
16	Steering operational synergies in terrestrial observation networks: opportunity for advancing Earth system dynamics modelling. Earth System Dynamics, 2018, 9, 593-609.	2.7	28
17	Cosmicâ€ray Neutron Rover Surveys of Field Soil Moisture and the Influence of Roads. Water Resources Research, 2018, 54, 6441-6459.	1.7	53
18	Understanding Forest Health with Remote Sensing, Part III: Requirements for a Scalable Multi-Source Forest Health Monitoring Network Based on Data Science Approaches. Remote Sensing, 2018, 10, 1120.	1.8	63

#	Article	IF	Citations
19	Development and analysis of the Soil Water Infiltration Global database. Earth System Science Data, 2018, 10, 1237-1263.	3.7	85
20	The Bode hydrological observatory: a platform for integrated, interdisciplinary hydro-ecological research within the TERENO Harz/Central German Lowland Observatory. Environmental Earth Sciences, 2017, 76, 1.	1.3	93
21	Pedotransfer Functions in Earth System Science: Challenges and Perspectives. Reviews of Geophysics, 2017, 55, 1199-1256.	9.0	316
22	Principal Component Analysis of the Spatiotemporal Pattern of Soil Moisture and Apparent Electrical Conductivity. Vadose Zone Journal, 2017, 16, 1-12.	1.3	10
23	Repeated electromagnetic induction measurements for mapping soil moisture at the field scale: validation with data from a wireless soil moisture monitoring network. Hydrology and Earth System Sciences, 2017, 21, 495-513.	1.9	52
24	The SCALEX Campaign: Scale-Crossing Land Surface and Boundary Layer Processes in the TERENO-preAlpine Observatory. Bulletin of the American Meteorological Society, 2017, 98, 1217-1234.	1.7	49
25	Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity. Hydrology and Earth System Sciences, 2017, 21, 5009-5030.	1.9	93
26	TERENO-SOILCan: a lysimeter-network in Germany observing soil processes and plant diversity influenced by climate change. Environmental Earth Sciences, 2016, 75, 1.	1.3	73
27	Monitoring Environmental Water with Ground Albedo Neutrons from Cosmic Rays. , 2016, , .		11
28	Footprint characteristics revised for fieldâ€scale soil moisture monitoring with cosmicâ€ray neutrons. Water Resources Research, 2015, 51, 5772-5790.	1.7	189
29	Spatial and Temporal Dynamics of Hillslopeâ€Scale Soil Moisture Patterns: Characteristic States and Transition Mechanisms. Vadose Zone Journal, 2015, 14, 1-16.	1.3	51
30	Mapping the Spectral Soil Quality Index (SSQI) Using Airborne Imaging Spectroscopy. Remote Sensing, 2015, 7, 15748-15781.	1.8	36
31	A new multiscale approach for monitoring vegetation using remote sensing-based indicators in laboratory, field, and landscape. Environmental Monitoring and Assessment, 2013, 185, 1215-1235.	1.3	44
32	Using long-term ecosystem service and biodiversity data to study the impacts and adaptation options in response to climate change: insights from the global ILTER sites network. Current Opinion in Environmental Sustainability, 2013, 5, 53-66.	3.1	39
33	Digital Soil Mapping: Approaches to Integrate Sensing Techniques to the Prediction of Key Soil Properties. Vadose Zone Journal, 2013, 12, 1-4.	1.3	7
34	Analysis of Vegetation and Soil Patterns using Hyperspectral Remote Sensing, EMI, and Gammaâ€Ray Measurements. Vadose Zone Journal, 2013, 12, 1-15.	1.3	28
35	Near-surface soil moisture estimation by combining airborne L-band brightness temperature observations and imaging hyperspectral data at the field scale. Journal of Applied Remote Sensing, 2012, 6, 063516.	0.6	7
36	Scale-specific Hyperspectral Remote Sensing Approach in Environmental Research. Photogrammetrie, Fernerkundung, Geoinformation, 2012, 2012, 589-601.	1.2	10

#	ARTICLE	IF	CITATION
37	International viewpoint and news. Environmental Earth Sciences, 2012, 66, 1279-1284.	1.3	18
38	Comparison of approaches for the characterization of contamination at rural megasites. Environmental Earth Sciences, 2011, 63, 1239-1249.	1.3	14
39	A Network of Terrestrial Environmental Observatories in Germany. Vadose Zone Journal, 2011, 10, 955-973.	1.3	401
40	Attempt of a fluxâ€based evaluation of field capacity. Journal of Plant Nutrition and Soil Science, 2008, 171, 399-408.	1.1	22
41	Excluding Organic Matter Content from Pedotransfer Predictors of Soil Water Retention. Soil Science Society of America Journal, 2007, 71, 43-50.	1.2	95
42	Prüfung von 3 Verfahren zur Vorhersage der hydraulischen LeitfÃĦigkeit ungesÃĦigter Böden aus Wasserretentionsdaten oder aus der Bodenart. Journal of Plant Nutrition and Soil Science, 2000, 163, 7-12.	1.1	4
43	Auswirkungen des Anbaus vonMiscanthus x giganteus auf chemische und physikalische Bodeneigenschaften. Journal of Plant Nutrition and Soil Science, 1999, 162, 27-32.	1.1	17
44	Orientierende untersuchungen zum einfluss des miscanthusanbaus auf ausgewÄĦlte eigenschaften verschiedener bĶden. Archives of Agronomy and Soil Science, 1996, 40, 163-174.	1.3	3