Junsoo Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6139995/publications.pdf

Version: 2024-02-01

	840776		1199594	
13	581	11	12	
papers	citations	h-index	g-index	
13	13	13	542	
all docs	docs citations	times ranked	citing authors	

#	Article	lF	CITATIONS
1	How to analyse a density of states. , 2022, 1, 100002.		28
2	Experimental validation of high thermoelectric performance in RECuZnP2 predicted by high-throughput DFT calculations. Materials Horizons, 2021, 8, 209-215.	12.2	38
3	Optimal band structure for thermoelectrics with realistic scattering and bands. Npj Computational Materials, 2021, 7, .	8.7	25
4	Efficient calculation of carrier scattering rates from first principles. Nature Communications, 2021, 12, 2222.	12.8	205
5	Compromise between band structure and phonon scattering in efficient n-Mg3Sb2-Bi thermoelectrics. Materials Today Physics, 2021, 18, 100362.	6.0	41
6	When band convergence is not beneficial for thermoelectrics. Nature Communications, 2021, 12, 3425.	12.8	51
7	High Thermoelectric Performance and Defect Energetics of Multipocketed Full Heusler Compounds. Physical Review Applied, 2020, 14, .	3.8	25
8	Exceptionally high electronic mobility in defect-rich Eu ₂ ZnSb _{2â°x} Bi _x alloys. Journal of Materials Chemistry A, 2020, 8, 6004-6012.	10.3	18
9	Leveraging electron-phonon interaction to enhance the thermoelectric power factor in graphene-like semimetals. Physical Review B, 2019, 100, .	3.2	6
10	High Thermoelectric Power Factor and Efficiency from a Highly Dispersive Band in <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>Ba</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mi>Bi<td>ni>^{3,8}mml:r</td><td>ni>49 ni>Au</td></mml:mi></mml:math>	ni> ^{3,8} mml:r	ni>49 ni>Au
11	First-principles assessment of thermoelectric properties of CuFeS2. Journal of Applied Physics, 2019, 125, .	2.5	22
12	High Thermoelectric Power Factor in IntermetallicCoSiArising from Energy Filtering of Electrons by Phonon Scattering. Physical Review Applied, 2019, 11, .	3.8	31
13	Wafer-Scale Black Arsenic–Phosphorus Thin-Film Synthesis Validated with Density Functional Perturbation Theory Predictions. ACS Applied Nano Materials, 2018, 1, 4737-4745.	5.0	42