Susan P Mccormick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6139909/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trichothecenes: From Simple to Complex Mycotoxins. Toxins, 2011, 3, 802-814.	1.5	391
2	Phylogenetic analyses of RPB1 and RPB2 support a middle Cretaceous origin for a clade comprising all agriculturally and medically important fusaria. Fungal Genetics and Biology, 2013, 52, 20-31.	0.9	366
3	Genes, gene clusters, and biosynthesis of trichothecenes and fumonisins in <i>Fusarium</i> . Toxin Reviews, 2009, 28, 198-215.	1.5	248
4	Global gene regulation by <i>Fusarium</i> transcription factors <i>Tri6</i> and <i>Tri10</i> reveals adaptations for toxin biosynthesis. Molecular Microbiology, 2009, 72, 354-367.	1.2	241
5	One Fungus, One Name: Defining the Genus <i>Fusarium</i> in a Scientifically Robust Way That Preserves Longstanding Use. Phytopathology, 2013, 103, 400-408.	1.1	219
6	The genetic basis for 3-ADON and 15-ADON trichothecene chemotypes in Fusarium. Fungal Genetics and Biology, 2011, 48, 485-495.	0.9	180
7	Evidence that a secondary metabolic biosynthetic gene cluster has grown by gene relocation during evolution of the filamentous fungus <i>Fusarium</i> . Molecular Microbiology, 2009, 74, 1128-1142.	1.2	177
8	A Genetic and Biochemical Approach to Study Trichothecene Diversity in Fusarium sporotrichioides and Fusarium graminearum. Fungal Genetics and Biology, 2001, 32, 121-133.	0.9	170
9	Evidence for a gene cluster involving trichothecene-pathway biosynthetic genes in Fusarium sporotrichioides. Current Genetics, 1993, 24, 291-295.	0.8	146
10	Inactivation of a cytochrome P-450 is a determinant of trichothecene diversity in Fusarium species. Fungal Genetics and Biology, 2002, 36, 224-233.	0.9	146
11	Functional demarcation of the Fusarium core trichothecene gene cluster. Fungal Genetics and Biology, 2004, 41, 454-462.	0.9	146
12	New tricks of an old enemy: isolates of <scp><i>F</i></scp> <i>usarium graminearum</i> produce a type <scp>A</scp> trichothecene mycotoxin. Environmental Microbiology, 2015, 17, 2588-2600.	1.8	145
13	Evolution of structural diversity of trichothecenes, a family of toxins produced by plant pathogenic and entomopathogenic fungi. PLoS Pathogens, 2018, 14, e1006946.	2.1	141
14	The <i>TRI11</i> Gene of <i>Fusarium sporotrichioides</i> Encodes a Cytochrome P-450 Monooxygenase Required for C-15 Hydroxylation in Trichothecene Biosynthesis. Applied and Environmental Microbiology, 1998, 64, 221-225.	1.4	135
15	Microbial Detoxification of Mycotoxins. Journal of Chemical Ecology, 2013, 39, 907-918.	0.9	131
16	Occurrence ofFusariumSpecies and Mycotoxins in Nepalese Maize and Wheat and the Effect of Traditional Processing Methods on Mycotoxin Levels. Journal of Agricultural and Food Chemistry, 2000, 48, 1377-1383.	2.4	124
17	Transgenic Wheat Expressing a Barley UDP-Glucosyltransferase Detoxifies Deoxynivalenol and Provides High Levels of Resistance to <i>Fusarium graminearum</i> . Molecular Plant-Microbe Interactions, 2015, 28, 1237-1246.	1.4	120
18	TheTri4 gene ofFusarium sporotrichioides encodes a cytochrome P450 monooxygenase involved in trichothecene biosynthesis. Molecular Genetics and Genomics, 1995, 248, 95-102.	2.4	112

#	Article	IF	CITATIONS
19	Disruption of <i>TRI101</i> , the Gene Encoding Trichothecene 3- <i>O</i> -Acetyltransferase, from <i>Fusarium sporotrichioides</i> . Applied and Environmental Microbiology, 1999, 65, 5252-5256.	1.4	111
20	Phylogenomic Analysis of a 55.1-kb 19-Gene Dataset Resolves a Monophyletic <i>Fusarium</i> that Includes the <i>Fusarium solani</i> Species Complex. Phytopathology, 2021, 111, 1064-1079.	1.1	107
21	Restoration of wild-type virulence to Tri5 disruption mutants of Gibberella zeae via gene reversion and mutant complementation. Microbiology (United Kingdom), 1997, 143, 2583-2591.	0.7	97
22	Diversity of Fusarium head blight populations and trichothecene toxin types reveals regional differences in pathogen composition and temporal dynamics. Fungal Genetics and Biology, 2015, 82, 22-31.	0.9	96
23	Transgenic Arabidopsis thaliana expressing a barley UDP-glucosyltransferase exhibit resistance to the mycotoxin deoxynivalenol. Journal of Experimental Botany, 2012, 63, 4731-4740.	2.4	92
24	Relevance of trichothecenes in fungal physiology: Disruption of tri5 in Trichoderma arundinaceum. Fungal Genetics and Biology, 2013, 53, 22-33.	0.9	89
25	Structural and Functional Characterization of the TRI101 Trichothecene 3-O-Acetyltransferase from Fusarium sporotrichioides and Fusarium graminearum. Journal of Biological Chemistry, 2008, 283, 1660-1669.	1.6	86
26	Fusarium Tri8 Encodes a Trichothecene C-3 Esterase. Applied and Environmental Microbiology, 2002, 68, 2959-2964.	1.4	83
27	Elimination of damaged mitochondria through mitophagy reduces mitochondrial oxidative stress and increases tolerance to trichothecenes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11798-11803.	3.3	82
28	Marasas et al. 1984 "Toxigenic <i>Fusarium</i> Species: Identity and Mycotoxicology―revisited. Mycologia, 2018, 110, 1058-1080.	0.8	79
29	A barley UDP-glucosyltransferase inactivates nivalenol and provides Fusarium Head Blight resistance in transgenic wheat. Journal of Experimental Botany, 2017, 68, 2187-2197.	2.4	74
30	Structureâ^'Activity Relationships of Trichothecene Toxins in an <i>Arabidopsis thaliana</i> Leaf Assay. Journal of Agricultural and Food Chemistry, 2007, 55, 6487-6492.	2.4	73
31	Transgenic expression of the TRI101 or PDR5 gene increases resistance of tobacco to the phytotoxic effects of the trichothecene 4,15-diacetoxyscirpenol. Plant Science, 2000, 157, 201-207.	1.7	70
32	<i>CLM1</i> of <i>Fusarium graminearum</i> Encodes a Longiborneol Synthase Required for Culmorin Production. Applied and Environmental Microbiology, 2010, 76, 136-141.	1.4	70
33	Monoclonal Antibodies for the Mycotoxins Deoxynivalenol and 3-Acetyl-Deoxynivalenol. Food and Agricultural Immunology, 2000, 12, 181-192.	0.7	69
34	Anomericity of T-2 Toxin-glucoside: Masked Mycotoxin in Cereal Crops. Journal of Agricultural and Food Chemistry, 2015, 63, 731-738.	2.4	68
35	Fusarium Tri4encodes a multifunctional oxygenase required for trichothecene biosynthesis. Canadian Journal of Microbiology, 2006, 52, 636-642.	0.8	67
36	Functional Roles of FgLaeA in Controlling Secondary Metabolism, Sexual Development, and Virulence in Fusarium graminearum. PLoS ONE, 2013, 8, e68441.	1.1	66

#	Article	IF	CITATIONS
37	Glucosylation and Other Biotransformations of T-2 Toxin by Yeasts of the Trichomonascus Clade. Applied and Environmental Microbiology, 2012, 78, 8694-8702.	1.4	65
38	Production of trichodiene by <scp><i>T</i></scp> <i>richoderma harzianum</i> alters the perception of this biocontrol strain by plants and antagonized fungi. Environmental Microbiology, 2015, 17, 2628-2646.	1.8	64
39	The inhibitory effect of neem (Azadirachta indica) leaf extracts on aflatoxin synthesis inAspergillus parasiticus. JAOCS, Journal of the American Oil Chemists' Society, 1988, 65, 1166-1168.	0.8	61
40	Fusarium sibiricum sp. nov, a novel type A trichothecene-producing Fusarium from northern Asia closely related to F. sporotrichioides and F. langsethiae. International Journal of Food Microbiology, 2011, 147, 58-68.	2.1	61
41	Aflatoxin production in cultures of Aspergillus flavus incubated in atmospheres containing selected cotton leaf-derived volatiles. Toxicon, 1990, 28, 445-448.	0.8	59
42	A genome-wide screen in Saccharomyces cerevisiae reveals a critical role for the mitochondria in the toxicity of a trichothecene mycotoxin. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21883-21888.	3.3	57
43	Tracing the metabolism of HT-2 toxin and T-2 toxin in barley by isotope-assisted untargeted screening and quantitative LC-HRMS analysis. Analytical and Bioanalytical Chemistry, 2015, 407, 8019-8033.	1.9	56
44	Novel aspinolide production by <scp><i>T</i></scp> <i>richoderma arundinaceum</i> with a potential role in <scp><i>B</i></scp> <i>otrytis cinerea</i> antagonistic activity and plant defence priming. Environmental Microbiology, 2015, 17, 1103-1118.	1.8	56
45	Flavonoids of Wyethia angustifolia and W. helenioides. Phytochemistry, 1986, 25, 1723-1726.	1.4	55
46	Trichothecene Mycotoxins Inhibit Mitochondrial Translation—Implication for the Mechanism of Toxicity. Toxins, 2011, 3, 1484-1501.	1.5	54
47	Phytotoxicity of selected trichothecenes usingChlamydomonas reinhardtii as a model system. Natural Toxins, 1999, 7, 265-269.	1.0	49
48	Crystal Structure of Os79 (Os04g0206600) from <i>Oryza sativa</i> : A UDP-glucosyltransferase Involved in the Detoxification of Deoxynivalenol. Biochemistry, 2016, 55, 6175-6186.	1.2	49
49	Phylogenetic diversity, trichothecene potential, and pathogenicity within Fusarium sambucinum species complex. PLoS ONE, 2021, 16, e0245037.	1.1	49
50	Expression of 3-OH trichothecene acetyltransferase in barley (Hordeum vulgare L.) and effects on deoxynivalenol. Plant Science, 2006, 171, 699-706.	1.7	48
51	DNA Sequence-Based Identification of <i>Fusarium</i> : A Work in Progress. Plant Disease, 2022, 106, 1597-1609.	0.7	48
52	Population genetic structure and mycotoxin potential of the wheat crown rot and head blight pathogen Fusarium culmorum in Algeria. Fungal Genetics and Biology, 2017, 103, 34-41.	0.9	44
53	Heterologous expression of two trichothecene P450 genes inFusarium verticillioides. Canadian Journal of Microbiology, 2006, 52, 220-226.	0.8	39
54	Bioprospecting for Trichothecene 3- <i>O</i> -Acetyltransferases in the Fungal Genus <i>Fusarium</i> Yields Functional Enzymes with Different Abilities To Modify the Mycotoxin Deoxynivalenol. Applied and Environmental Microbiology, 2011, 77, 1162-1170.	1.4	39

#	Article	IF	CITATIONS
55	Expression of Tri15 in Fusarium sporotrichioides. Current Genetics, 2004, 45, 157-162.	0.8	37
56	The arbuscular mycorrhizal fungus, <i>Glomus irregulare</i> , controls the mycotoxin production of <i>Fusarium sambucinum</i> in the pathogenesis of potato. FEMS Microbiology Letters, 2013, 348, 46-51.	0.7	37
57	<i>Fusarium</i> mycotoxins: a trans-disciplinary overview. Canadian Journal of Plant Pathology, 2018, 40, 161-171.	0.8	37
58	A Fungal Symbiont of Plant-Roots Modulates Mycotoxin Gene Expression in the Pathogen Fusarium sambucinum. PLoS ONE, 2011, 6, e17990.	1.1	37
59	Structural and functional characterization of TRI3 trichothecene 15â€ <i>O</i> â€acetyltransferase from <i>Fusarium sporotrichioides</i> . Protein Science, 2009, 18, 747-761.	3.1	34
60	<i>Fusarium dactylidis</i> sp. nov., a novel nivalenol toxin-producing species sister to <i>F. pseudograminearum</i> isolated from orchard grass (<i>Dactylis glomerata</i>) in Oregon and New Zealand. Mycologia, 2015, 107, 409-418.	0.8	34
61	Regional differences in the composition of Fusarium Head Blight pathogens and mycotoxins associated with wheat in Mexico. International Journal of Food Microbiology, 2018, 273, 11-19.	2.1	34
62	A Lipid Transfer Protein has Antifungal and Antioxidant Activity and Suppresses Fusarium Head Blight Disease and DON Accumulation in Transgenic Wheat. Phytopathology, 2021, 111, 671-683.	1.1	33
63	Synergistic Phytotoxic Effects of Culmorin and Trichothecene Mycotoxins. Toxins, 2019, 11, 555.	1.5	32
64	Diversity of Sesquiterpenes in 46 Potato Cultivars and Breeding Selections. Journal of Agricultural and Food Chemistry, 1995, 43, 2267-2272.	2.4	30
65	The identification of theSaccharomyces cerevisiae geneAYT1(ORF-YLL063c) encoding an acetyltransferase. Yeast, 2002, 19, 1425-1430.	0.8	30
66	Determinants and Expansion of Specificity in a Trichothecene UDP-Glucosyltransferase from <i>Oryza sativa</i> . Biochemistry, 2017, 56, 6585-6596.	1.2	30
67	Study of the natural occurrence of T-2 and HT-2 toxins and their glucosyl derivatives from field barley to malt by high-resolution Orbitrap mass spectrometry. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2015, 32, 1647-1655.	1.1	28
68	Detoxification of the potato phytoalexin rishitin by Gibberella pulicaris. Phytochemistry, 1994, 37, 1001-1005.	1.4	27
69	Effect of deletion of a trichothecene toxin regulatory gene on the secondary metabolism transcriptome of the saprotrophic fungus Trichoderma arundinaceum. Fungal Genetics and Biology, 2018, 119, 29-46.	0.9	27
70	<i>Fusarium graminearum</i> arabinanase (Arb93B) Enhances Wheat Head Blight Susceptibility by Suppressing Plant Immunity. Molecular Plant-Microbe Interactions, 2019, 32, 888-898.	1.4	27
71	A Lipid Transfer Protein Increases the Clutathione Content and Enhances Arabidopsis Resistance to a Trichothecene Mycotoxin. PLoS ONE, 2015, 10, e0130204.	1.1	25
72	Trichothecenes and aspinolides produced by <i>Trichoderma arundinaceum</i> regulate expression of <i>Botrytis cinerea</i> genes involved in virulence and growth. Environmental Microbiology, 2016, 18, 3991-4004.	1.8	25

#	Article	IF	CITATIONS
73	Effects of Atmospheric CO2 Level on the Metabolic Response of Resistant and Susceptible Wheat to Fusarium graminearum Infection. Molecular Plant-Microbe Interactions, 2019, 32, 379-391.	1.4	25
74	Flavonoids from Wyethia glabra. Phytochemistry, 1985, 24, 1614-1616.	1.4	24
75	Molecular systematics of two sister clades, the <i>Fusarium concolor</i> and <i>F. babinda</i> species complexes, and the discovery of a novel microcycle macroconidium–producing species from South Africa. Mycologia, 2018, 110, 1189-1204.	0.8	24
76	An Imaging Surface Plasmon Resonance Biosensor Assay for the Detection of T-2 Toxin and Masked T-2 Toxin-3-Glucoside in Wheat. Toxins, 2018, 10, 119.	1.5	24
77	Characterization of Three Fusarium graminearum Effectors and Their Roles During Fusarium Head Blight. Frontiers in Plant Science, 2020, 11, 579553.	1.7	23
78	Sarocladium zeae is a systemic endophyte of wheat and an effective biocontrol agent against Fusarium head blight. Biological Control, 2020, 149, 104329.	1.4	21
79	Genetic bases for variation in structure and biological activity of trichothecene toxins produced by diverse fungi. Applied Microbiology and Biotechnology, 2020, 104, 5185-5199.	1.7	21
80	Modification of the Mycotoxin Deoxynivalenol Using Microorganisms Isolated from Environmental Samples. Toxins, 2017, 9, 141.	1.5	18
81	Development and Evaluation of Monoclonal Antibodies for the Glucoside of T-2 Toxin (T2-Glc). Toxins, 2013, 5, 1299-1313.	1.5	17
82	Variation in Type A Trichothecene Production and Trichothecene Biosynthetic Genes in Fusarium goolgardi from Natural Ecosystems of Australia. Toxins, 2015, 7, 4577-4594.	1.5	17
83	Fluorescence Polarization Immunoassay for the Determination of T-2 and HT-2 Toxins and Their Glucosides in Wheat. Toxins, 2019, 11, 380.	1.5	17
84	Regional and field-specific differences in Fusarium species and mycotoxins associated with blighted North Carolina wheat. International Journal of Food Microbiology, 2020, 323, 108594.	2.1	17
85	Altered Regulation of 15-Acetyldeoxynivalenol Production in Fusarium graminearum. Applied and Environmental Microbiology, 2000, 66, 2062-2065.	1.4	16
86	Effects of xanthotoxin treatment on trichothecene production in <i>Fusarium sporotrichioides</i> . Canadian Journal of Microbiology, 2008, 54, 1023-1031.	0.8	16
87	Trichothecene-Producing Fusarium Species Isolated from Soybean Roots in Ethiopia and Ghana and their Pathogenicity on Soybean. Plant Disease, 2019, 103, 2070-2075.	0.7	16
88	Role of Trichoderma arundinaceum tri10 in regulation of terpene biosynthetic genes and in control of metabolic flux. Fungal Genetics and Biology, 2019, 122, 31-46.	0.9	16
89	Fiveâ€year survey uncovers extensive diversity and temporal fluctuations among fusarium head blight pathogens of wheat and barley in Brazil. Plant Pathology, 2021, 70, 426-435.	1.2	16
90	Methylated Chalcones from Bidens torta. Phytochemistry, 1984, 23, 2400-2401.	1.4	15

#	Article	IF	CITATIONS
91	Identification and heritability of fumonisin insensitivity in Zea mays. Phytochemistry, 2005, 66, 2474-2480.	1.4	15
92	Botrydial and botcinins produced by <scp><i>B</i></scp> <i>otrytis cinerea</i> regulate the expression of <scp><i>T</i></scp> <i>richoderma arundinaceum</i> genes involved in trichothecene biosynthesis. Molecular Plant Pathology, 2016, 17, 1017-1031.	2.0	14
93	Characterization of a Fusarium graminearum Salicylate Hydroxylase. Frontiers in Microbiology, 2018, 9, 3219.	1.5	14
94	o-and c-glycosylflavones from passiflora biflora. Phytochemistry, 1983, 22, 798-799.	1.4	13
95	High-performance liquid chromatographic procedure for determining the profiles of aflatoxin precursors in wildtype and mutant strains of Aspergillus parasiticus. Journal of Chromatography A, 1988, 441, 400-405.	1.8	13
96	<i>Myrothecium roridum Tri4</i> encodes a multifunctional oxygenase required for three oxygenation steps. Canadian Journal of Microbiology, 2007, 53, 572-579.	0.8	13
97	A cytochrome P450 monooxygenase gene required for biosynthesis of the trichothecene toxin harzianum A in Trichoderma. Applied Microbiology and Biotechnology, 2019, 103, 8087-8103.	1.7	13
98	Gain and loss of a transcription factor that regulates late trichothecene biosynthetic pathway genes in Fusarium. Fungal Genetics and Biology, 2020, 136, 103317.	0.9	13
99	Effects of Atmospheric CO2 and Temperature on Wheat and Corn Susceptibility to Fusarium graminearum and Deoxynivalenol Contamination. Plants, 2021, 10, 2582.	1.6	13
100	Accent typology and sound change. Lingua, 1981, 53, 295-315.	0.4	12
101	Requirement of Two Acyltransferases for 4- <i>O</i> -Acylation during Biosynthesis of Harzianum A, an Antifungal Trichothecene Produced by <i>Trichoderma arundinaceum</i> . Journal of Agricultural and Food Chemistry, 2019, 67, 723-734.	2.4	12
102	Fusarium praegraminearum sp. nov., a novel nivalenol mycotoxin-producing pathogen from New Zealand can induce head blight on wheat. Mycologia, 2016, 108, 1229-1239.	0.8	12
103	Fusarium head blight resistance exacerbates nutritional loss of wheat grain at elevated CO2. Scientific Reports, 2022, 12, 15.	1.6	12
104	Flavonoids of Wyethia section Agnorhiza. Phytochemistry, 1987, 26, 2421-2422.	1.4	11
105	Microbial Correlates of <i>Fusarium</i> Load and Deoxynivalenol Content in Individual Wheat Kernels. Phytopathology, 2019, 109, 993-1002.	1.1	11
106	Determination of 42 mycotoxins in oats using a mechanically assisted QuEChERS sample preparation and UHPLC-MS/MS detection. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1150, 122187.	1.2	11
107	flavones from Calycadenia ciliosa (Compositae): Inter- and intrapopulational variation. Biochemical Systematics and Ecology, 1986, 14, 29-32.	0.6	10
108	Fusarium subtropicale, sp. nov., a novel nivalenol mycotoxin–producing species isolated from barley (Hordeum vulgare) in Brazil and sister to F. praegraminearum. Mycologia, 2018, 110, 860-871.	0.8	10

#	Article	IF	CITATIONS
109	Pseudoflowers produced by Fusarium xyrophilum on yellow-eyed grass (Xyris spp.) in Guyana: A novel floral mimicry system?. Fungal Genetics and Biology, 2020, 144, 103466.	0.9	10
110	Use of the volatile trichodiene to reduce Fusarium head blight and trichothecene contamination in wheat. Microbial Biotechnology, 2022, 15, 513-527.	2.0	10
111	Distribution, Function, and Evolution of a Gene Essential for Trichothecene Toxin Biosynthesis in Trichoderma. Frontiers in Microbiology, 2021, 12, 791641.	1.5	10
112	Transition metal ion complexes of the conjugate base of 3-phenyl-5-methyl-1-hydroxypyrazole 2-oxide. Journal of Inorganic and Nuclear Chemistry, 1977, 39, 1231-1233.	0.5	9
113	Flavonoids of Passiflora pavonis. Journal of Natural Products, 1981, 44, 623-624.	1.5	9
114	The Flavonoids of Passiflora sexflora. Journal of Natural Products, 1982, 45, 782-782.	1.5	9
115	Methylated flavonols from Wyethia bolanderi and Balsamorhiza macrophylla. Phytochemistry, 1985, 24, 2133.	1.4	9
116	Association between Solavetivone Production and Resistance toGlobodera rostochiensisin Potato. Journal of Agricultural and Food Chemistry, 1997, 45, 2322-2326.	2.4	9
117	Changes in Wheat Nutritional Content at Elevated [CO2] Alter Fusarium graminearum Growth and Mycotoxin Production on Grain. Journal of Agricultural and Food Chemistry, 2020, 68, 6297-6307.	2.4	8
118	Development of an LC-MS/MS Determination Method for T-2 Toxin and Its Glucoside and Acetyl Derivatives for Estimating the Contamination of Total T-2 Toxins in Staple Flours. Journal of AOAC INTERNATIONAL, 2018, 101, 658-666.	0.7	7
119	Intrapopulation Antagonism Can Reduce the Growth and Aggressiveness of the Wheat Head Blight Pathogen <i>Fusarium graminearum</i> . Phytopathology, 2020, 110, 916-926.	1.1	7
120	Chitin Triggers Tissue-Specific Immunity in Wheat Associated With Fusarium Head Blight. Frontiers in Plant Science, 2022, 13, 832502.	1.7	7
121	Detoxification and Excretion of Trichothecenes in Transgenic Arabidopsis thaliana Expressing Fusarium graminearum Trichothecene 3-O-acetyltransferase. Toxins, 2021, 13, 320.	1.5	6
122	Trichothecene toxin effects on barley callus and seedling growth. Cereal Research Communications, 2001, 29, 115-120.	0.8	6
123	Some lanthanide complexes of the conjugate base of 3-phenyl-5-methyl-1-hydroxypyrazole-2-oxide. Journal of Inorganic and Nuclear Chemistry, 1977, 39, 2083-2084.	0.5	5
124	Reactivity of Deoxynivalenol (Vomitoxin) Monoclonal Antibody Towards Putative Trichothecene Precursors and Shunt Metabolites. Journal of Food Protection, 1991, 54, 288-290.	0.8	5
125	Trichothecene Triangle: Toxins, Genes, and Plant Disease. , 2013, , 1-17.		5
126	6-Methoxyflavonoids from Balsamorhiza sectionArtorhiza. Biochemical Systematics and Ecology, 1988, 16, 411-412.	0.6	4

#	Article	IF	CITATIONS
127	Trichoderma trichothecenes. , 2020, , 281-301.		4
128	Malformation Disease in <i>Tabebuia rosea</i> (Rosy Trumpet) Caused by <i>Fusarium pseudocircinatum</i> in Mexico. Plant Disease, 2021, 105, 2822-2829.	0.7	4
129	Effects of Double-Stranded RNAs Targeting <i>Fusarium graminearum TRI6</i> on Fusarium Head Blight and Mycotoxins. Phytopathology, 2021, 111, 2080-2087.	1.1	3
130	Role of Toxins in Plant Microbial Interactions. , 1998, , 17-30.		3
131	Chromium(III) complexes of the conjugate bases of substituted 1-hydroxypyrazole 2-oxides. Journal of Inorganic and Nuclear Chemistry, 1977, 39, 2086-2087.	0.5	2
132	The flavonoids of Trichophorum cespitosum. Phytochemistry, 1980, 21, 2991.	1.4	2
133	Weeds Harbor <i>Fusarium</i> Species that Cause Malformation Disease of Economically Important Trees in Western Mexico. Plant Disease, 2022, 106, 612-622.	0.7	1
134	Morphophonology. , 0, , .		1