Maya Bar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6139577/publications.pdf Version: 2024-02-01

MAVA RAD

#	Article	IF	CITATIONS
1	Cytokinin drives assembly of the phyllosphere microbiome and promotes disease resistance through structural and chemical cues. ISME Journal, 2022, 16, 122-137.	4.4	31
2	The Entomopathogenic Fungi <i>Metarhizium brunneum</i> and <i>BeauveriaÂbassiana</i> Promote Systemic Immunity and Confer Resistance toÂaÂBroad Range of Pests and Pathogens in Tomato. Phytopathology, 2022, 112, 784-793.	1.1	30
3	Cytokinin-microbiome interactions regulate developmental functions. Environmental Microbiomes, 2022, 17, 2.	2.2	5
4	Erratum for Gupta et al., "Cytokinin Inhibits Fungal Development and Virulence by Targeting the Cytoskeleton and Cellular Trafficking― MBio, 2022, , e0030522.	1.8	0
5	The VIL gene CRAWLING ELEPHANT controls maturation and differentiation in tomato via polycomb silencing. PLoS Genetics, 2022, 18, e1009633.	1.5	2
6	TOR inhibition primes immunity and pathogen resistance in tomato in a salicylic acidâ€dependent manner. Molecular Plant Pathology, 2022, 23, 1035-1047.	2.0	10
7	Cytokinin production and sensing in fungi. Microbiological Research, 2022, 262, 127103.	2.5	6
8	Coordination of differentiation rate and local patterning in compoundâ€leaf development. New Phytologist, 2021, 229, 3558-3572.	3.5	9
9	Cytokinin induces bacterial pathogen resistance in tomato. Plant Pathology, 2021, 70, 318-325.	1.2	25
10	Root zone warming represses foliar diseases in tomato by inducing systemic immunity. Plant, Cell and Environment, 2021, 44, 2277-2289.	2.8	13
11	Method for the Production and Purification of Plant Immuno-Active Xylanase from Trichoderma. International Journal of Molecular Sciences, 2021, 22, 4214.	1.8	21
12	Coordinating the morphogenesis-differentiation balance by tweaking the cytokinin-gibberellin equilibrium. PLoS Genetics, 2021, 17, e1009537.	1.5	14
13	Cytokinin Modulates Cellular Trafficking and the Cytoskeleton, Enhancing Defense Responses. Cells, 2021, 10, 1634.	1.8	8
14	Gene Editing of the Decoy Receptor LeEIX1 Increases Host Receptivity to Trichoderma Bio-Control. Frontiers in Fungal Biology, 2021, 2, .	0.9	4
15	Cytokinin Inhibits Fungal Development and Virulence by Targeting the Cytoskeleton and Cellular Trafficking. MBio, 2021, 12, e0306820.	1.8	10
16	Show me your secret(ed) weapons: a multifaceted approach reveals a wide arsenal of type IIIâ€secreted effectors in the cucurbit pathogenic bacterium <i>Acidovorax citrulli</i> and novel effectors in the <i>Acidovorax</i> genus. Molecular Plant Pathology, 2020, 21, 17-37.	2.0	42
17	Characterization of the cytokinin sensor TCSv2 in arabidopsis and tomato. Plant Methods, 2020, 16, 152.	1.9	21
18	A gain of function mutation in SINRC4a enhances basal immunity resulting in broad-spectrum disease resistance. Communications Biology, 2020, 3, 404.	2.0	12

Maya Bar

#	Article	IF	CITATIONS
19	Cytokinin response induces immunity and fungal pathogen resistance, and modulates trafficking of the PRR LeEIX2 in tomato. Molecular Plant Pathology, 2020, 21, 1287-1306.	2.0	53
20	Plant Immunity, Priming, and Systemic Resistance as Mechanisms for Trichoderma spp. Biocontrol. Rhizosphere Biology, 2020, , 81-110.	0.4	14
21	Tomato Dynamin Related Protein 2A Associates With LeEIX2 and Enhances PRR Mediated Defense by Modulating Receptor Trafficking. Frontiers in Plant Science, 2019, 10, 936.	1.7	11
22	Plant trichomes and the biomechanics of defense in various systems, with Solanaceae as a model. Botany, 2019, 97, 651-660.	0.5	24
23	Multiple Auxin-Response Regulators Enable Stability and Variability in Leaf Development. Current Biology, 2019, 29, 1746-1759.e5.	1.8	34
24	The intracellular nucleotideâ€binding leucineâ€rich repeat receptor (SINRC4a) enhances immune signalling elicited by extracellular perception. Plant, Cell and Environment, 2018, 41, 2313-2327.	2.8	38
25	SIPRA1A/RAB attenuate EIX immune responses via degradation of LeEIX2 pattern recognition receptor. Plant Signaling and Behavior, 2018, 13, e1467689.	1.2	4
26	Tomato Prenylated RAB Acceptor Protein 1 Modulates Trafficking and Degradation of the Pattern Recognition Receptor LeEIX2, Affecting the Innate Immune Response. Frontiers in Plant Science, 2018, 9, 257.	1.7	27
27	NRC proteins - a critical node for pattern and effector mediated signaling. Plant Signaling and Behavior, 2018, 13, 1-4.	1.2	9
28	Nomad scientists and the ones left behind. ELife, 2017, 6, .	2.8	1
29	CLAUSA is a MYB Transcription Factor that Promotes Leaf Differentiation by Attenuating Cytokinin Signaling. Plant Cell, 2016, 28, tpc.00211.2016.	3.1	40
30	Auxinâ€mediated lamina growth in tomato leaves is restricted by two parallel mechanisms. Plant Journal, 2016, 86, 443-457.	2.8	50
31	Hormones in tomato leaf development. Developmental Biology, 2016, 419, 132-142.	0.9	65
32	<scp>CLAUSA</scp> restricts tomato leaf morphogenesis and <i><scp>GOBLET</scp></i> expression. Plant Journal, 2015, 83, 888-902.	2.8	21
33	Compound leaf development in model plant species. Current Opinion in Plant Biology, 2015, 23, 61-69.	3.5	85
34	Sterol-Dependent Induction of Plant Defense Responses by a Microbe-Associated Molecular Pattern from <i>Trichoderma viride</i> Â Â Â. Plant Physiology, 2014, 164, 819-827.	2.3	16
35	The function of EHD2 in endocytosis and defense signaling is affected by SUMO. Plant Molecular Biology, 2014, 84, 509-518.	2.0	5
36	Leaf development and morphogenesis. Development (Cambridge), 2014, 141, 4219-4230.	1.2	199

Maya Bar

#	Article	IF	CITATIONS
37	Endosomal trafficking and signaling in plant defense responses. Current Opinion in Plant Biology, 2014, 22, 86-92.	3.5	12
38	EHD1 Functions in Endosomal Recycling and Confers Salt Tolerance. PLoS ONE, 2013, 8, e54533.	1.1	19
39	Endocytosis of LeEix and EHD Proteins During Plant Defense Signalling. , 2012, , 297-311.		2
40	Endosomal signaling of the tomato leucineâ€rich repeat receptorâ€like protein LeEix2. Plant Journal, 2011, 68, 413-423.	2.8	92
41	LeEix1 functions as a decoy receptor to attenuate LeEix2 signaling. Plant Signaling and Behavior, 2011, 6, 455-457.	1.2	19
42	BAK1 is required for the attenuation of ethylene-inducing xylanase (Eix)-induced defense responses by the decoy receptor LeEix1. Plant Journal, 2010, 63, 791-800.	2.8	141
43	Endocytosis in Plant – Fungal Interactions. Cellular Origin and Life in Extreme Habitats, 2010, , 495-508.	0.3	0
44	The Coiled-Coil Domain of EHD2 Mediates Inhibition of LeEix2 Endocytosis and Signaling. PLoS ONE, 2009, 4, e7973.	1.1	58
45	EHD2 inhibits signaling ofÂLeucine rich repeat receptor-like proteins. Plant Signaling and Behavior, 2009, 4, 682-684.	1.2	13
46	EHD2 inhibits ligandâ€induced endocytosis and signaling of the leucineâ€rich repeat receptorâ€like protein LeEix2. Plant Journal, 2009, 59, 600-611.	2.8	107
47	AtEHDs, novel Arabidopsis EHâ€domainâ€containing proteins involved in endocytosis. Plant Journal, 2008, 55, 1025-1038.	2.8	53
48	AtEHDs in endocytosis. Plant Signaling and Behavior, 2008, 3, 1008-1010.	1.2	6
49	Constitutive caspase-like machinery executes programmed cell death in plant cells. Cell Death and Differentiation, 2002, 9, 726-733.	5.0	114
50	Engineering Plants to Improve Their Immune System. Frontiers for Young Minds, 0, 9, .	0.8	0