Yuan-Ping Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/613869/publications.pdf

Version: 2024-02-01

46 papers

2,910 citations

201575

27

h-index

214721 47 g-index

48 all docs

48 docs citations

48 times ranked 5015 citing authors

#	Article	IF	CITATIONS
1	Sequestration of Intestinal Acidic Toxins by Cationic Resin Attenuates Pancreatic Cancer Progression through Promoting Autophagic Flux for YAP Degradation. Cancers, 2022, 14, 1407.	1.7	2
2	Vitamin D and Pancreatitis: A Narrative Review of Current Evidence. Nutrients, 2022, 14, 2113.	1.7	10
3	Physically Cross-Linked DNA Hydrogel-Based Sustained Cytokine Delivery for <i>In Situ</i> Diabetic Alveolar Bone Rebuilding. ACS Applied Materials & Diabetic Supplied Materials & Diabeti	4.0	24
4	Plant green pigment of chlorophyllin attenuates inflammatory bowel diseases by suppressing autophagy activation in mice. American Journal of Physiology - Renal Physiology, 2022, 323, G102-G113.	1.6	2
5	Hepatitis B Virus X Protein (HBx) Suppresses Transcription Factor EB (TFEB) Resulting in Stabilization of Integrin Beta 1 (ITGB1) in Hepatocellular Carcinoma Cells. Cancers, 2021, 13, 1181.	1.7	10
6	Green Plant Pigment, Chlorophyllin, Ameliorates Non-alcoholic Fatty Liver Diseases (NAFLDs) Through Modulating Gut Microbiome in Mice. Frontiers in Physiology, 2021, 12, 739174.	1.3	3
7	A DNA Nanoraft-Based Cytokine Delivery Platform for Alleviation of Acute Kidney Injury. ACS Nano, 2021, 15, 18237-18249.	7.3	31
8	The unique pancreatic stellate cell gene expression signatures are associated with the progression from acute to chronic pancreatitis. Computational and Structural Biotechnology Journal, 2021, 19, 6375-6385.	1.9	5
9	Impaired 25-hydroxylation of vitamin D in liver injury suppresses intestinal Paneth cell defensins, leading to gut dysbiosis and liver fibrogenesis. American Journal of Physiology - Renal Physiology, 2020, 319, G685-G695.	1.6	12
10	Vitamin D signaling maintains intestinal innate immunity and gut microbiota: potential intervention for metabolic syndrome and NAFLD. American Journal of Physiology - Renal Physiology, 2020, 318, G542-G553.	1.6	27
11	Chlorophyllin Modulates Gut Microbiota and Inhibits Intestinal Inflammation to Ameliorate Hepatic Fibrosis in Mice. Frontiers in Physiology, 2018, 9, 1671.	1.3	28
12	Cathepsin H–Mediated Degradation of HDAC4 for Matrix Metalloproteinase Expression in Hepatic Stellate Cells. American Journal of Pathology, 2017, 187, 781-797.	1.9	23
13	Cationic Polystyrene Resolves Nonalcoholic Steatohepatitis, Obesity, and Metabolic Disorders by Promoting Eubiosis of Gut Microbiota and Decreasing Endotoxemia. Diabetes, 2017, 66, 2137-2143.	0.3	24
14	M2-like macrophages in the fibrotic liver protect mice against lethal insults through conferring apoptosis resistance to hepatocytes. Scientific Reports, 2017, 7, 10518.	1.6	46
15	Alternation of Gut Microbiota in Patients with Pulmonary Tuberculosis. Frontiers in Physiology, 2017, 8, 822.	1.3	121
16	Vitamin D Signaling through Induction of Paneth Cell Defensins Maintains Gut Microbiota and Improves Metabolic Disorders and Hepatic Steatosis in Animal Models. Frontiers in Physiology, 2016, 7, 498.	1.3	142
17	Persistence of cirrhosis is maintained by intrahepatic regulatory T cells that inhibit fibrosis resolution by regulating the balance of tissue inhibitors of metalloproteinases and matrix metalloproteinases. Translational Research, 2016, 169, 67-79.e2.	2.2	28
18	Spontaneous liver fibrosis induced by long term dietary vitamin D deficiency in adult mice is related to chronic inflammation and enhanced apoptosis. Canadian Journal of Physiology and Pharmacology, 2015, 93, 385-394.	0.7	38

#	Article	IF	Citations
19	Vitamin D deficiency promotes nonalcoholic steatohepatitis through impaired enterohepatic circulation in animal model. American Journal of Physiology - Renal Physiology, 2014, 307, G883-G893.	1.6	50
20	Prognostic value of M30/M65 for outcome of hepatitis B virus-related acute-on-chronic liver failure. World Journal of Gastroenterology, 2014, 20, 2403.	1.4	25
21	Vitamin <scp>D</scp> in liver diseases: From mechanisms to clinical trials. Journal of Gastroenterology and Hepatology (Australia), 2013, 28, 49-55.	1.4	47
22	Restoration of intrahepatic regulatory T cells through MMP-9/13-dependent activation of TGF-Â is critical for immune homeostasis following acute liver injury. Journal of Molecular Cell Biology, 2013, 5, 369-379.	1.5	38
23	BAFF Promotes Th17 Cells and Aggravates Experimental Autoimmune Encephalomyelitis. PLoS ONE, 2011, 6, e23629.	1.1	60
24	Interleukin-1 as an Injury Signal Mobilizes Retinyl Esters in Hepatic Stellate Cells through Down Regulation of Lecithin Retinol Acyltransferase. PLoS ONE, 2011, 6, e26644.	1.1	15
25	Therapeutic Window, a Critical Developmental Stage for Stem Cell Therapies. Current Stem Cell Research and Therapy, 2010, 5, 287-293.	0.6	8
26	c-Jun mediates hepatitis C virus hepatocarcinogenesis through signal transducer and activator of transcription 3 and nitric oxide-dependent impairment of oxidative DNA repair. Hepatology, 2010, 52, 480-492.	3.6	84
27	Epithelial to Mesenchymal Transition in Human Skin Wound Healing Is Induced by Tumor Necrosis Factor-α through Bone Morphogenic Protein-2. American Journal of Pathology, 2010, 176, 2247-2258.	1.9	230
28	Epigenetic Repression of Matrix Metalloproteinases in Myofibroblastic Hepatic Stellate Cells through Histone Deacetylases 4. American Journal of Pathology, 2010, 177, 1915-1928.	1.9	82
29	Interleukin-1 participates in the progression from liver injury to fibrosis. American Journal of Physiology - Renal Physiology, 2009, 296, G1324-G1331.	1.6	223
30	Tumor necrosis factor-alpha induced expression of matrix metalloproteinase-9 through p21-activated Kinase-1. BMC Immunology, 2009, 10, 15.	0.9	68
31	α1â€Antichymotrypsin activity correlates with and may modulate matrix metalloproteinaseâ€9 in human acute wounds. Wound Repair and Regeneration, 2009, 17, 418-426.	1.5	20
32	Contribution of hepatic stellate cells and matrix metalloproteinase 9 in acute liver failure. Liver International, 2008, 28, 959-971.	1.9	46
33	Proteolytic Activation of Matrix Metalloproteinase-9 in Skin Wound Healing Is Inhibited by α-1-Antichymotrypsin. Journal of Investigative Dermatology, 2008, 128, 2334-2342.	0.3	45
34	Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis. American Journal of Physiology - Renal Physiology, 2008, 294, G39-G49.	1.6	222
35	Transforming Growth Factor $\hat{l}\pm$ (TGF $\hat{l}\pm$)-Stimulated Secretion of HSP90 $\hat{l}\pm$: Using the Receptor LRP-1/CD91 To Promote Human Skin Cell Migration against a TGF \hat{l}^2 -Rich Environment during Wound Healing. Molecular and Cellular Biology, 2008, 28, 3344-3358.	1.1	201
36	MicroRNA Expression in Colon Adenocarcinoma. JAMA - Journal of the American Medical Association, 2008, 299, 2628.	3.8	10

#	Article	IF	CITATIONS
37	A Matrix Metalloproteinase-9 Activation Cascade by Hepatic Stellate Cells in Trans-differentiation in the Three-dimensional Extracellular Matrix. Journal of Biological Chemistry, 2007, 282, 12928-12939.	1.6	87
38	TNF-α Suppresses α-Smooth Muscle Actin Expression in Human Dermal Fibroblasts: An Implication for Abnormal Wound Healing. Journal of Investigative Dermatology, 2007, 127, 2645-2655.	0.3	168
39	Matrix metalloproteinases, the pros and cons, in liver fibrosis. Journal of Gastroenterology and Hepatology (Australia), 2006, 21, S88-S91.	1.4	128
40	Interleukin-1α–induced proteolytic activation of metalloproteinase-9 by human skin. Surgery, 2005, 138, 932-939.	1.0	25
41	Essential Role of Matrix Metalloproteinases in Interleukin-1-induced Myofibroblastic Activation of Hepatic Stellate Cell in Collagen. Journal of Biological Chemistry, 2004, 279, 4820-4828.	1.6	134
42	Fibrinogen inhibits fibroblast-mediated contraction of collagen. Wound Repair and Regeneration, 2003, 11, 380-385.	1.5	38
43	Tumor Necrosis Factor-α-induced Proteolytic Activation of Pro-matrix Metalloproteinase-9 by Human Skin Is Controlled by Down-regulating Tissue Inhibitor of Metalloproteinase-1 and Mediated by Tissue-associated Chymotrypsin-like Proteinase. Journal of Biological Chemistry, 2002, 277, 27319-27327.	1.6	57
44	The Recombinant Expression of Full-length Type VII Collagen and Characterization of Molecular Mechanisms Underlying Dystrophic Epidermolysis Bullosa. Journal of Biological Chemistry, 2002, 277, 2118-2124.	1.6	70
45	IL-8-Stimulated Expression of Urokinase-Type Plasminogen Activator in Human Skin and Human Epidermal Cells. Journal of Surgical Research, 2002, 106, 328-334.	0.8	13
46	Transforming Growth Factor- \hat{l}^2 - and Tumor Necrosis Factor- \hat{l} ±-mediated Induction and Proteolytic Activation of MMP-9 in Human Skin. Journal of Biological Chemistry, 2001, 276, 22341-22350.	1.6	139