## You-xiang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6138646/publications.pdf Version: 2024-02-01



YOU-YIANG WANG

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Bioinspired NO release coating enhances endothelial cells and inhibits smooth muscle cells. Journal of Materials Chemistry B, 2022, 10, 2454-2462.                                                   | 2.9 | 9         |
| 2  | Dissolving microneedles with a biphasic release of antibacterial agent and growth factor to promote wound healing. Biomaterials Science, 2022, 10, 2409-2416.                                        | 2.6 | 18        |
| 3  | The substrate stiffness at physiological range significantly modulates vascular cell behavior.<br>Colloids and Surfaces B: Biointerfaces, 2022, 214, 112483.                                         | 2.5 | 4         |
| 4  | Mir-22-incorporated polyelectrolyte coating prevents intima hyperplasia after balloon-induced vascular injury. Biomaterials Science, 2022, 10, 3612-3623.                                            | 2.6 | 5         |
| 5  | A Tough, Slippery, and Anticoagulant Double-Network Hydrogel Coating. ACS Applied Polymer<br>Materials, 2022, 4, 5941-5951.                                                                          | 2.0 | 14        |
| 6  | The influence of substrate stiffness on osteogenesis of vascular smooth muscle cells. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111388.                                                     | 2.5 | 7         |
| 7  | A miRNA stabilizing polydopamine nano-platform for intraocular delivery of miR-21-5p in glaucoma therapy. Journal of Materials Chemistry B, 2021, 9, 3335-3345.                                      | 2.9 | 17        |
| 8  | Polydopamine nanoparticles with different sizes for NIR-promoted gene delivery and synergistic photothermal therapy. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112125.                      | 2.5 | 25        |
| 9  | Build an implanted "arsenal― detachable microneedles for NIR-triggered cancer<br>photothermo-chemotherapy. Biomaterials Science, 2021, 9, 4737-4745.                                                 | 2.6 | 8         |
| 10 | A gene-coated microneedle patch based on industrialized ultrasonic spraying technology with a polycation vector to improve antitumor efficacy. Journal of Materials Chemistry B, 2021, 9, 5528-5536. | 2.9 | 15        |
| 11 | pH-responsive polydopamine nanoparticles for photothermally promoted gene delivery. Materials<br>Science and Engineering C, 2020, 108, 110396.                                                       | 3.8 | 40        |
| 12 | Biodegradable phosphorylcholine copolymer for cardiovascular stent coating. Journal of Materials<br>Chemistry B, 2020, 8, 5361-5368.                                                                 | 2.9 | 27        |
| 13 | Rapidly dissolving microneedle patch for synergistic gene and photothermal therapy of subcutaneous<br>tumor. Journal of Materials Chemistry B, 2020, 8, 4331-4339.                                   | 2.9 | 47        |
| 14 | Cutaneous microenvironment responsive microneedle patch for rapid gene release to treat subdermal<br>tumor. Journal of Controlled Release, 2019, 314, 72-80.                                         | 4.8 | 58        |
| 15 | Redox-responsive hyaluronic acid nanogels for hyperthermia- assisted chemotherapy to overcome multidrug resistance. Carbohydrate Polymers, 2019, 203, 378-385.                                       | 5.1 | 39        |
| 16 | DNA-loaded microbubbles with crosslinked bovine serum albumin shells for ultrasound-promoted gene delivery and transfection. Colloids and Surfaces B: Biointerfaces, 2018, 161, 279-287.             | 2.5 | 10        |
| 17 | Polydopamine-based nanoparticles with excellent biocompatibility for photothermally enhanced gene<br>delivery. RSC Advances, 2018, 8, 34596-34602.                                                   | 1.7 | 23        |
| 18 | Tip-loaded fast-dissolving microneedle patches for photodynamic therapy of subcutaneous tumor.<br>Journal of Controlled Release, 2018, 286, 201-209.                                                 | 4.8 | 122       |

YOU-XIANG WANG

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Intracellular fluorescent light-up bioprobes with different morphology for image-guided photothermal cancer therapy. Colloids and Surfaces B: Biointerfaces, 2017, 154, 133-141.                                            | 2.5 | 12        |
| 20 | Regulation the morphology of cationized gold nanoparticles for effective gene delivery. Colloids and Surfaces B: Biointerfaces, 2017, 157, 18-25.                                                                           | 2.5 | 32        |
| 21 | An easy gene assembling strategy for light-promoted transfection by combining host-guest interaction of cucurbit[7]uril and gold nanoparticles. Scientific Reports, 2017, 7, 6064.                                          | 1.6 | 8         |
| 22 | Programmed photosensitizer conjugated supramolecular nanocarriers with dual targeting ability for enhanced photodynamic therapy. Chemical Communications, 2016, 52, 11935-11938.                                            | 2.2 | 29        |
| 23 | Cationized bovine serum albumin as gene carrier: Influence of specific secondary structure on DNA complexibility and gene transfection. Colloids and Surfaces B: Biointerfaces, 2016, 143, 37-46.                           | 2.5 | 17        |
| 24 | R8-modified polysarcosine- b -polylysine polypeptide to enhance circulation stability and gene delivery efficiency. Journal of Controlled Release, 2015, 213, e50-e51.                                                      | 4.8 | 7         |
| 25 | Development of Supramolecular Pseudoâ€Block Conjugates Based on Starâ€Shaped Polycation for DNA<br>Delivery. Macromolecular Chemistry and Physics, 2015, 216, 1507-1515.                                                    | 1.1 | 1         |
| 26 | Azo-capped polysarcosine-b-polylysine as polypeptide gene vector: A new strategy to improve stability<br>and easy optimization via host–guest interaction. Colloids and Surfaces B: Biointerfaces, 2015, 130,<br>31-39.     | 2.5 | 12        |
| 27 | Polypeptoids with tunable cloud point temperatures synthesized from N-substituted glycine<br>N-thiocarboxyanhydrides. Polymer Chemistry, 2015, 6, 3164-3174.                                                                | 1.9 | 51        |
| 28 | Cell penetrating peptide-based polyplexes shelled with polysaccharide to improve stability and gene transfection. Nanoscale, 2015, 7, 8476-8484.                                                                            | 2.8 | 27        |
| 29 | Design and formulation of trimethylated chitosan-graft-poly(É›-caprolactone) nanoparticles used for<br>gene delivery. Carbohydrate Polymers, 2014, 101, 104-112.                                                            | 5.1 | 45        |
| 30 | Photoluminescent supramolecular hyperbranched polymer without conventional chromophores based on inclusion complexation. Chemical Communications, 2014, 50, 9584.                                                           | 2.2 | 36        |
| 31 | Multifunctional nanoparticles via host–guest interactions: a universal platform for targeted imaging and light-regulated gene delivery. Chemical Communications, 2014, 50, 1579.                                            | 2.2 | 35        |
| 32 | Redox-triggered intracellular dePEGylation based on diselenide-linked polycations for DNA delivery.<br>Journal of Materials Chemistry B, 2013, 1, 6418.                                                                     | 2.9 | 37        |
| 33 | Bioinspired phosphorylcholine-modified polyplexes as an effective strategy for selective uptake and transfection of cancer cells. Colloids and Surfaces B: Biointerfaces, 2013, 111, 297-305.                               | 2.5 | 26        |
| 34 | Tat-conjugated hyaluronic acid enveloping polyplexes with facilitated nuclear entry and improved transfection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 423, 124-130.                        | 2.3 | 4         |
| 35 | Light-regulated host–guest interaction as a new strategy for intracellular PEG-detachable polyplexes<br>to facilitate nuclear entry. Chemical Communications, 2012, 48, 10126.                                              | 2.2 | 34        |
| 36 | Functional Poly(Dimethyl Aminoethyl Methacrylate) by Combination of Radical Ringâ€Opening<br>Polymerization and Click Chemistry for Biomedical Applications. Macromolecular Chemistry and<br>Physics, 2012, 213, 1643-1654. | 1.1 | 29        |

YOU-XIANG WANG

| #  | Article                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The influence of cyclodextrin modification on cellular uptake and transfection efficiency of polyplexes. Organic and Biomolecular Chemistry, 2011, 9, 7799.                      | 1.5 | 29        |
| 38 | Preparation of chitosan rods with excellent mechanical properties: One candidate for bone fracture internal fixation. Science China Chemistry, 2011, 54, 380-384.                | 4.2 | 32        |
| 39 | A facile approach to construct hyaluronic acid shielding polyplexes with improved stability and reduced cytotoxicity. Colloids and Surfaces B: Biointerfaces, 2011, 84, 259-266. | 2.5 | 35        |
| 40 | A facile approach to construct hybrid multi-shell calcium phosphate gene particles. Journal of<br>Zhejiang University: Science B, 2010, 11, 292-297.                             | 1.3 | 7         |
| 41 | A facile approach to construct three-dimensional oriented chitosan scaffolds with in-situ precipitation method. Carbohydrate Polymers, 2010, 80, 408-412.                        | 5.1 | 12        |
| 42 | Preparation and characterization of cellulose fiber/chitosan composites. Polymer Composites, 2009, 30, 1517-1522.                                                                | 2.3 | 26        |
| 43 | Cholesterol tethered bioresponsive polycation as a candidate for gene delivery. Materials Science and Engineering C, 2009, 29, 1066-1070.                                        | 3.8 | 5         |
| 44 | Construction of caged polyplexes with a reversible intracellular unpacking property to improve stability and transfection. Acta Biomaterialia, 2008, 4, 1235-1243.               | 4.1 | 14        |
| 45 | Stability and Drug Loading of Spontaneous Vesicles of Comb-Like PEG Derivates. Macromolecular Rapid<br>Communications, 2007, 28, 660-665.                                        | 2.0 | 20        |
| 46 | A facile entrapment approach to construct PEGylated polyplexes for improving stability in physiological condition. Colloids and Surfaces B: Biointerfaces, 2007, 58, 188-196.    | 2.5 | 14        |
| 47 | The development and characterization of a glutathione-sensitive cross-linked polyethylenimine gene vector. Biomaterials, 2006, 27, 5292-5298.                                    | 5.7 | 106       |
| 48 | Construction and deconstruction of PLL/DNA multilayered films for DNA delivery: Effect of ionic strength. Colloids and Surfaces B: Biointerfaces, 2005, 46, 63-69.               | 2.5 | 55        |
| 49 | Progress in non-viral gene delivery systems fabricated via supramolecular assembly. Science Bulletin, 2005, 50, 289-294.                                                         | 1.7 | 4         |
| 50 | Preparation and magnetic properties of [P(St-co-AA)]Ni microspheres. Journal of Applied Polymer Science, 1997, 64, 1843-1848.                                                    | 1.3 | 24        |
| 51 | Laserâ€triggered Interfacial Generation of ROS Promotes a Rapid Fabrication of Polydopamine Coating.<br>Macromolecular Materials and Engineering, 0, , 2100987.                  | 1.7 | 0         |