Naiqiang Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6138289/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low temperature selective catalytic reduction of NO with NH3 over Mn–Fe spinel: Performance, mechanism and kinetic study. Applied Catalysis B: Environmental, 2011, 110, 71-80.	10.8	429
2	Novel effect of SO2 on the SCR reaction over CeO2: Mechanism and significance. Applied Catalysis B: Environmental, 2013, 136-137, 19-28.	10.8	312
3	Gaseous Heterogeneous Catalytic Reactions over Mn-Based Oxides for Environmental Applications: A Critical Review. Environmental Science & Technology, 2017, 51, 8879-8892.	4.6	291
4	Status and characteristics of ambient PM2.5 pollution in global megacities. Environment International, 2016, 89-90, 212-221.	4.8	287
5	Capture of gaseous elemental mercury from flue gas using a magnetic and sulfur poisoning resistant sorbent Mn/l³-Fe2O3 at lower temperatures. Journal of Hazardous Materials, 2011, 186, 508-515.	6.5	206
6	Catalytic Oxidation of Elemental Mercury over the Modified Catalyst Mn/α-Al ₂ O ₃ at Lower Temperatures. Environmental Science & Technology, 2010, 44, 426-431.	4.6	205
7	Fe–Ti spinel for the selective catalytic reduction of NO with NH3: Mechanism and structure–activity relationship. Applied Catalysis B: Environmental, 2012, 117-118, 73-80.	10.8	178
8	MnO _{<i>x</i>} /Graphene for the Catalytic Oxidation and Adsorption of Elemental Mercury. Environmental Science & Technology, 2015, 49, 6823-6830.	4.6	177
9	Remarkable effect of the incorporation of titanium on the catalytic activity and SO2 poisoning resistance of magnetic Mn–Fe spinel for elemental mercury capture. Applied Catalysis B: Environmental, 2011, 101, 698-708.	10.8	167
10	Adsorption and Catalytic Oxidation of Gaseous Elemental Mercury in Flue Gas over MnO _{<i>x</i>} /Alumina. Industrial & Engineering Chemistry Research, 2009, 48, 3317-3322.	1.8	164
11	Gaseous Elemental Mercury Capture from Flue Gas Using Magnetic Nanosized (Fe _{3-<i>x</i>} Mn _{<i>x</i>}) _{1-1´} O ₄ . Environmental Science & Technology, 2011, 45, 1540-1546.	4.6	161
12	A novel method for the sequential removal and separation of multiple heavy metals from wastewater. Journal of Hazardous Materials, 2018, 342, 617-624.	6.5	143
13	Recyclable CuS sorbent with large mercury adsorption capacity in the presence of SO2 from non-ferrous metal smelting flue gas. Fuel, 2019, 235, 847-854.	3.4	139
14	Nanosized Cation-Deficient Feâ^'Ti Spinel: A Novel Magnetic Sorbent for Elemental Mercury Capture from Flue Gas. ACS Applied Materials & Interfaces, 2011, 3, 209-217.	4.0	137
15	Catalytic oxidation and adsorption of Hg0 over low-temperature NH3-SCR LaMnO3 perovskite oxide from flue gas. Applied Catalysis B: Environmental, 2016, 186, 30-40.	10.8	134
16	Significance of RuO ₂ Modified SCR Catalyst for Elemental Mercury Oxidation in Coal-fired Flue Gas. Environmental Science & Technology, 2011, 45, 5725-5730.	4.6	126
17	Improvement of the Activity of γ-Fe ₂ O ₃ for the Selective Catalytic Reduction of NO with NH ₃ at High Temperatures: NO Reduction versus NH ₃ Oxidization. Industrial & Engineering Chemistry Research, 2013, 52, 5601-5610.	1.8	118
18	Different crystal-forms of one-dimensional MnO2 nanomaterials for the catalytic oxidation and adsorption of elemental mercury. Journal of Hazardous Materials, 2015, 299, 86-93.	6.5	112

#	Article	IF	CITATIONS
19	Elemental Mercury Capture from Flue Gas by Magnetic Mn–Fe Spinel: Effect of Chemical Heterogeneity. Industrial & Engineering Chemistry Research, 2011, 50, 9650-9656.	1.8	111
20	[MoS ₄] ^{2–} Cluster Bridges in Co–Fe Layered Double Hydroxides for Mercury Uptake from S–Hg Mixed Flue Gas. Environmental Science & Technology, 2017, 51, 10109-10116.	4.6	104
21	Design of 3D MnO2/Carbon sphere composite for the catalytic oxidation and adsorption of elemental mercury. Journal of Hazardous Materials, 2018, 342, 69-76.	6.5	100
22	Novel regenerable sorbent based on Zr–Mn binary metal oxides for flue gas mercury retention and recovery. Journal of Hazardous Materials, 2013, 261, 206-213.	6.5	97
23	One Step Interface Activation of ZnS Using Cupric Ions for Mercury Recovery from Nonferrous Smelting Flue Gas. Environmental Science & Technology, 2019, 53, 4511-4518.	4.6	96
24	β-Cyclodextrin stabilized magnetic Fe ₃ S ₄ nanoparticles for efficient removal of Pb(<scp>ii</scp>). Journal of Materials Chemistry A, 2015, 3, 15755-15763.	5.2	92
25	Substitution of WO ₃ in V ₂ O ₅ /WO ₃ –TiO ₂ by Fe ₂ O ₃ for selective catalytic reduction of NO with NH3. Catalysis Science and Technology, 2013, 3, 161-168.	2.1	90
26	Mechanism of the Selective Catalytic Oxidation of Slip Ammonia over Ru-Modified Ce–Zr Complexes Determined by in Situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy. Environmental Science & Technology, 2014, 48, 12199-12205.	4.6	89
27	Utilization of Ag nanoparticles anchored in covalent organic frameworks for mercury removal from acidic waste water. Journal of Hazardous Materials, 2020, 389, 121824.	6.5	86
28	Graphene enhanced Mn-Ce binary metal oxides for catalytic oxidation and adsorption of elemental mercury from coal-fired flue gas. Chemical Engineering Journal, 2019, 358, 1499-1506.	6.6	79
29	Morphology-dependent properties of Co 3 O 4 /CeO 2 catalysts for low temperature dibromomethane (CH 2 Br 2) oxidation. Chemical Engineering Journal, 2017, 320, 124-134.	6.6	77
30	Competition of selective catalytic reduction and non selective catalytic reduction over MnO _x /TiO ₂ for NO removal: the relationship between gaseous NO concentration and N ₂ O selectivity. Catalysis Science and Technology, 2014, 4, 224-232.	2.1	76
31	Ultraeffective ZnS Nanocrystals Sorbent for Mercury(II) Removal Based on Size-Dependent Cation Exchange. ACS Applied Materials & Interfaces, 2014, 6, 18026-18032.	4.0	75
32	Design of MnO2/CeO2-MnO2 hierarchical binary oxides for elemental mercury removal from coal-fired flue gas. Journal of Hazardous Materials, 2017, 333, 186-193.	6.5	73
33	Enhancing photocatalytic activity on gas-phase heavy metal oxidation with self-assembled BiOI/BiOCl microflowers. Journal of Colloid and Interface Science, 2019, 546, 32-42.	5.0	73
34	Research of mercury removal from sintering flue gas of iron and steel by the open metal site of Mil-101(Cr). Journal of Hazardous Materials, 2018, 351, 301-307.	6.5	70
35	Review of Sulfur Promotion Effects on Metal Oxide Catalysts for NO _{<i>x</i>} Emission Control. ACS Catalysis, 2021, 11, 13119-13139.	5.5	69
36	Novel Effective Catalyst for Elemental Mercury Removal from Coal-Fired Flue Gas and the Mechanism Investigation. Environmental Science & Technology, 2016, 50, 2564-2572.	4.6	64

#	Article	IF	CITATIONS
37	Novel effect of SO 2 on selective catalytic oxidation of slip ammonia from coal-fired flue gas over IrO 2 modified Ce–Zr solid solution and the mechanism investigation. Fuel, 2016, 166, 179-187.	3.4	62
38	Surface nano-traps of Fe0/COFs for arsenic(III) depth removal from wastewater in non-ferrous smelting industry. Chemical Engineering Journal, 2020, 381, 122559.	6.6	62
39	Study on the regenerable sulfur-resistant sorbent for mercury removal from nonferrous metal smelting flue gas. Fuel, 2019, 241, 451-458.	3.4	60
40	Stabilization of mercury over Mn-based oxides: Speciation and reactivity by temperature programmed desorption analysis. Journal of Hazardous Materials, 2017, 321, 745-752.	6.5	58
41	Ag-Fe3O4@rGO ternary magnetic adsorbent for gaseous elemental mercury removal from coal-fired flue gas. Fuel, 2019, 239, 579-586.	3.4	58
42	A novel multi-functional magnetic Fe–Ti–V spinel catalyst for elemental mercury capture and callback from flue gas. Chemical Communications, 2010, 46, 8377.	2.2	56
43	Cu-BTC as a novel material for elemental mercury removal from sintering gas. Fuel, 2018, 217, 297-305.	3.4	55
44	A novel magnetic Fe–Ti–V spinel catalyst for the selective catalytic reduction of NO with NH3 in a broad temperature range. Catalysis Science and Technology, 2012, 2, 915.	2.1	53
45	Alkali-induced deactivation mechanism of V2O5-WO3/TiO2 catalyst during selective catalytic reduction of NO by NH3 in aluminum hydrate calcining flue gas. Applied Catalysis B: Environmental, 2020, 270, 118872.	10.8	53
46	Bromine Chloride as an Oxidant to Improve Elemental Mercury Removal from Coal-Fired Flue Gas. Environmental Science & Technology, 2009, 43, 8610-8615.	4.6	52
47	Dual-functional Sites for Selective Adsorption of Mercury and Arsenic ions in [SnS4]4-/MgFe-LDH from Wastewater. Journal of Hazardous Materials, 2021, 403, 123940.	6.5	52
48	The co-benefit of elemental mercury oxidation and slip ammonia abatement with SCR-Plus catalysts. Fuel, 2014, 133, 263-269.	3.4	51
49	Combined effects of Ag and UiO-66 for removal of elemental mercury from flue gas. Chemosphere, 2018, 197, 65-72.	4.2	49
50	Sn–Mn binary metal oxides as non-carbon sorbent for mercury removal in a wide-temperature window. Journal of Colloid and Interface Science, 2014, 428, 121-127.	5.0	47
51	Conversion of elemental mercury with a novel membrane catalytic system at low temperature. Journal of Hazardous Materials, 2012, 213-214, 62-70.	6.5	45
52	The cooperation of FeSn in a MnOx complex sorbent used for capturing elemental mercury. Fuel, 2015, 140, 803-809.	3.4	45
53	Reaction mechanism of propane oxidation over Co3O4 nanorods as rivals of platinum catalysts. Chemical Engineering Journal, 2020, 402, 125911.	6.6	45
54	Enhancement of heterogeneous oxidation and adsorption of Hg 0 in a wide temperature window using SnO 2 supported LaMnO 3 perovskite oxide. Chemical Engineering Journal, 2016, 292, 123-129.	6.6	44

#	Article	IF	CITATIONS
55	Immobilization of elemental mercury in non-ferrous metal smelting gas using ZnSe1â^'xSx nanoparticles. Fuel, 2019, 254, 115641.	3.4	44
56	Regenerable Sorbent with a High Capacity for Elemental Mercury Removal and Recycling from the Simulated Flue Gas at a Low Temperature. Energy & Fuels, 2015, 29, 6187-6196.	2.5	42
57	Multiphase Reactions between Secondary Organic Aerosol and Sulfur Dioxide: Kinetics and Contributions to Sulfate Formation and Aerosol Aging. Environmental Science and Technology Letters, 2019, 6, 768-774.	3.9	42
58	Mn-Promoted Co3O4/TiO2 as an efficient catalyst for catalytic oxidation of dibromomethane (CH2Br2). Journal of Hazardous Materials, 2016, 318, 1-8.	6.5	41
59	Regenerable Ag/graphene sorbent for elemental mercury capture at ambient temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 476, 83-89.	2.3	40
60	Enhancing the catalytic oxidation of elemental mercury and suppressing sulfur-toxic adsorption sites from SO2-containing gas in Mn-SnS2. Journal of Hazardous Materials, 2020, 392, 122230.	6.5	39
61	Ag-Mo modified SCR catalyst for a co-beneficial oxidation of elemental mercury at wide temperature range. Fuel, 2017, 200, 236-243.	3.4	38
62	Acceleration of Hg ^O Adsorption onto Natural Sphalerite by Cu ²⁺ Activation during Flotation: Mechanism and Applications in Hg ^O Recovery. Environmental Science & Technology, 2020, 54, 7687-7696.	4.6	35
63	Investigation on mercury removal method from flue gas in the presence of sulfur dioxide. Journal of Hazardous Materials, 2014, 279, 289-295.	6.5	34
64	Gaseous mercury capture using supported CuSx on layered double hydroxides from SO2-rich flue gas. Chemical Engineering Journal, 2020, 400, 125963.	6.6	34
65	Chemical characteristics of fine particulate matter emitted from commercial cooking. Frontiers of Environmental Science and Engineering, 2016, 10, 559-568.	3.3	33
66	Surface acidity enhancement of CeO ₂ catalysts <i>via</i> modification with a heteropoly acid for the selective catalytic reduction of NO with ammonia. Catalysis Science and Technology, 2019, 9, 5774-5785.	2.1	33
67	Ordered mesoporous spinel Co3O4 as a promising catalyst for the catalytic oxidation of dibromomethane. Molecular Catalysis, 2018, 461, 60-66.	1.0	31
68	Co-benefit of Ag and Mo for the catalytic oxidation of elemental mercury. Fuel, 2015, 158, 891-897.	3.4	30
69	Elemental mercury (Hg 0) removal over spinel LiMn 2 O 4 from coal-fired flue gas. Chemical Engineering Journal, 2016, 299, 142-149.	6.6	30
70	Study on a new wet flue gas desulfurization method based on the Bunsen reaction of sulfur-iodine thermochemical cycle. Fuel, 2017, 195, 33-37.	3.4	30
71	Co-doped ZnS with large adsorption capacity for recovering Hg0 from non-ferrous metal smelting gas as a co-benefit of electrostatic demisters. Environmental Science and Pollution Research, 2020, 27, 20469-20477.	2.7	29
72	Bidirectional Progressive Optimization of Carbon and Nitrogen Defects in Solar-Driven Regenerable Adsorbent to Remove UV-Filters from Water. ACS ES&T Engineering, 2021, 1, 456-466.	3.7	29

#	Article	IF	CITATIONS
73	Size-dependent nanocrystal sorbent for copper removal from water. Chemical Engineering Journal, 2016, 284, 565-570.	6.6	28
74	Manganese bridge of mercury and oxygen for elemental mercury capture from industrial flue gas in layered Mn/MCM-22 zeolite. Fuel, 2021, 283, 118973.	3.4	28
75	Shell-thickness-induced spontaneous inward migration of mercury in porous ZnO@CuS for gaseous mercury immobilization. Chemical Engineering Journal, 2021, 420, 127592.	6.6	28
76	The role of iodine monochloride for the oxidation of elemental mercury. Journal of Hazardous Materials, 2010, 183, 132-137.	6.5	27
77	Synthesis, characterization and experimental investigation of Cu-BTC as CO2 adsorbent from flue gas. Journal of Environmental Sciences, 2012, 24, 640-644.	3.2	27
78	The performance of Ag doped V ₂ O ₅ –TiO ₂ catalyst on the catalytic oxidation of gaseous elemental mercury. Catalysis Science and Technology, 2014, 4, 4036-4044.	2.1	27
79	Ag-modified Agl–TiO ₂ as an excellent and durable catalyst for catalytic oxidation of elemental mercury. RSC Advances, 2015, 5, 30841-30850.	1.7	27
80	Heterogeneous Reaction Mechanisms and Functional Materials for Elemental Mercury Removal from Industrial Flue Gas. ACS ES&T Engineering, 2021, 1, 1383-1400.	3.7	27
81	Catalytic performance and mechanistic evaluation of sulfated CeO2 cubes for selective catalytic reduction of NOx with ammonia. Journal of Hazardous Materials, 2021, 420, 126545.	6.5	27
82	Mass extinction efficiency and extinction hygroscopicity of ambient PM2.5 in urban China. Environmental Research, 2017, 156, 239-246.	3.7	26
83	A sulfur-resistant CuS-modified active coke for mercury removal from municipal solid waste incineration flue gas. Environmental Science and Pollution Research, 2019, 26, 24831-24839.	2.7	26
84	Atomically Dispersed Manganese on a Carbon-Based Material for the Capture of Gaseous Mercury: Mechanisms and Environmental Applications. Environmental Science & Technology, 2020, 54, 5249-5257.	4.6	26
85	Synthesis and characterization of nano-sized Mn–TiO2 catalysts and their application to removal of gaseous elemental mercury. Research on Chemical Intermediates, 2012, 38, 2511-2522.	1.3	25
86	Mn-based perovskite oxides for HgO adsorption and regeneration via a temperature swing adsorption (TSA) process. Fuel, 2016, 182, 428-436.	3.4	25
87	Morphology-controlled synthesis and sulfur modification of 3D hierarchical layered double hydroxides for gaseous elemental mercury removal. Journal of Colloid and Interface Science, 2019, 536, 431-439.	5.0	25
88	Stepwise lons Incorporation Method for Continuously Activating PbS to Recover Mercury from Hg ⁰ -Rich Flue Gas. Environmental Science & Technology, 2020, 54, 11594-11601.	4.6	25
89	The performance and mechanism of Ag-doped CeO ₂ /TiO ₂ catalysts in the catalytic oxidation of gaseous elemental mercury. Catalysis Science and Technology, 2015, 5, 2985-2993.	2.1	24
90	Design of Co3O4/CeO2–Co3O4 hierarchical binary oxides for the catalytic oxidation of dibromomethane. Journal of Industrial and Engineering Chemistry, 2019, 73, 134-141.	2.9	24

#	Article	IF	CITATIONS
91	CO2 adsorption performance of ZIF-7 and its endurance in flue gas components. Frontiers of Environmental Science and Engineering, 2014, 8, 162-168.	3.3	23
92	[SnS4]4- clusters modified MgAl-LDH composites for mercury ions removal from acid wastewater. Environmental Pollution, 2019, 247, 146-154.	3.7	21
93	Zinc concentrate internal circulation technology for elemental mercury recovery from zinc smelting flue gas. Fuel, 2020, 280, 118566.	3.4	21
94	Insight into the interfacial stability and reaction mechanism between gaseous mercury and chalcogen-based sorbents in SO2-containing flue gas. Journal of Colloid and Interface Science, 2020, 577, 503-511.	5.0	21
95	Conversion of Elemental Mercury with a Novel Membrane Delivery Catalytic Oxidation System (MDCOs). Environmental Science & amp; Technology, 2011, 45, 706-711.	4.6	20
96	Synergistic interaction and mechanistic evaluation of NO oxidation catalysis on Pt/Fe2O3 cubes. Chemical Engineering Journal, 2021, 413, 127447.	6.6	20
97	Metastable Facet-Controlled Cu ₂ WS ₄ Single Crystals with Enhanced Adsorption Activity for Gaseous Elemental Mercury. Environmental Science & Technology, 2021, 55, 5347-5356.	4.6	20
98	Regulation of the Sulfur Environment in Clusters to Construct a Mn–Sn ₂ S ₆ Framework for Mercury Bonding. Environmental Science & Technology, 2022, 56, 2689-2698.	4.6	20
99	An enhancement method for the elemental mercury removal from coal-fired flue gas based on novel discharge activation reactor. Fuel, 2016, 171, 59-64.	3.4	19
100	A hybrid block consisting of covalent triazine frameworks and GO aerogel with switchable selectivity between adsorption of UV filters and regeneration under sunlight. Chemical Engineering Journal, 2020, 395, 125074.	6.6	19
101	Mercury removal from flue gas using UiO-66-type metal-organic frameworks grafted with organic functionalities. Fuel, 2021, 289, 119807.	3.4	19
102	Production of H ₂ S with a Novel Short-Process for the Removal of Heavy Metals in Acidic Effluents from Smelting Flue-Gas Scrubbing Systems. Environmental Science & Technology, 2021, 55, 3988-3995.	4.6	19
103	Strengthen the Affinity of Element Mercury on the Carbon-Based Material by Adjusting the Coordination Environment of Single-Site Manganese. Environmental Science & Technology, 2021, 55, 14126-14135.	4.6	18
104	Enhancement of Ce _{1â^'x} Sn _x O ₂ support in LaMnO ₃ for the catalytic oxidation and adsorption of elemental mercury. RSC Advances, 2016, 6, 63559-63567.	1.7	17
105	Selective Reductive Removal of Silver Ions from Acidic Solutions by Redox-Active Covalent Organic Frameworks. ACS Applied Materials & Interfaces, 2020, 12, 37619-37627.	4.0	17
106	Adsorption of Gaseous Mercury for Engineering Optimization: From Macrodynamics to Adsorption Kinetics and Thermodynamics. ACS ES&T Engineering, 2021, 1, 865-873.	3.7	17
107	Seasonal variation of aerosol compositions in Shanghai, China: Insights from particle aerosol mass spectrometer observations. Science of the Total Environment, 2021, 771, 144948.	3.9	17
108	The performance and mechanism for the catalytic oxidation of dibromomethane (CH ₂ Br ₂) over Co ₃ O ₄ /TiO ₂ catalysts. RSC Advances, 2016, 6, 31181-31190.	1.7	15

#	Article	IF	CITATIONS
109	Catalytic oxidation of dibromomethane over Ti-modified Co3O4 catalysts: Structure, activity and mechanism. Journal of Colloid and Interface Science, 2017, 505, 870-883.	5.0	14
110	The Unique CO Activation Effects for Boosting NH ₃ Selective Catalytic Oxidation over CuO _{<i>x</i>} –CeO ₂ . Environmental Science & Technology, 2022, 56, 10402-10411.	4.6	14
111	Removal of Dibenzothiophene from the Simulated Petroleum by Î ³ -Irradiation Induced Reaction. Energy & Fuels, 2006, 20, 142-147.	2.5	13
112	Absorption characteristics of elemental mercury in mercury chloride solutions. Journal of Environmental Sciences, 2014, 26, 2257-2265.	3.2	12
113	Removal of mercury from flue gas from nonferrous metal smelting, by use of mercury chloride solution, and mechanisms of inhibition by sulfur dioxide. Research on Chemical Intermediates, 2015, 41, 5889-5905.	1.3	11
114	Enhanced simultaneous absorption of NO and SO2 in oxidation-reduction-absorption process with a compounded system based on Na2SO3. Journal of Environmental Sciences, 2022, 111, 1-10.	3.2	11
115	Fabrication of Cu2S hollow nanocages with enhanced high-temperature adsorption activity and recyclability for elemental mercury capture. Chemical Engineering Journal, 2022, 427, 130935.	6.6	11
116	Selective uptake of gaseous sulfur trioxide and mercury in ZnO-CuS composite at elevated temperatures from SO2-rich flue gas. Chemical Engineering Journal, 2022, 427, 132035.	6.6	11
117	Superior Hg0 capture performance and SO2 resistance of Co–Mn binary metal oxide-modified layered MCM-22 zeolite for SO2-containing flue gas. Environmental Science and Pollution Research, 2021, 28, 16447-16457.	2.7	11
118	Promoting effect of Mn and Ti on the structure and performance of Co 3 O 4 catalysts for oxidation of dibromomethane. Journal of Industrial and Engineering Chemistry, 2018, 57, 208-215.	2.9	10
119	Boosting RuO ₂ Surface Reactivity by Cu Active Sites over Ru/Cu-SSZ-13 for Simultaneous Catalytic Oxidation of CO and NH ₃ . Journal of Physical Chemistry C, 2021, 125, 17031-17041.	1.5	10
120	Tunable Redox Cycle and Enhanced π-Complexation in Acetylene Hydrochlorination over RuCu Catalysts. ACS Catalysis, 2022, 12, 7579-7588.	5.5	10
121	Importance of Hydroxyl Radical Chemistry in Isoprene Suppression of Particle Formation from α-Pinene Ozonolysis. ACS Earth and Space Chemistry, 2021, 5, 487-499.	1.2	9
122	Surface protection method for the magnetic core using covalent organic framework shells and its application in As(III) depth removal from acid wastewater. Journal of Environmental Sciences, 2022, 115, 1-9.	3.2	8
123	Excellent adsorption performance and capacity of modified layered ITQ-2 zeolites for elemental mercury removal and recycling from flue gas. Journal of Hazardous Materials, 2022, 423, 127118.	6.5	8
124	Removal of dibenzothiophene from simulated petroleum by integrated γ-irradiation and Zr/alumina catalyst. Applied Catalysis B: Environmental, 2007, 71, 108-115.	10.8	7
125	Understanding the Water Effect for Selective Catalytic Reduction of NO _{<i>x</i>} with NH ₃ over Cu-SSZ-13 Catalysts. ACS ES&T Engineering, 2022, 2, 1684-1696.	3.7	7
126	Modeling of formaldehyde destruction under pulsed discharge plasma. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2000, 35, 1951-1964.	0.9	6

#	Article	IF	CITATIONS
127	Degradation of dodecanethiol in dodecane by Î ³ -irradiation and improvement by sensitization. Fuel Processing Technology, 2004, 85, 1393-1402.	3.7	5
128	Reconstructed algorithm for scattering coefficient of ambient submicron particles. Environmental Pollution, 2019, 253, 439-448.	3.7	5
129	Radical-Induced Oxidation Removal of Mercury by Ozone Coupled with Bromine. ACS ES&T Engineering, 2021, 1, 110-116.	3.7	5
130	NO <i>_x</i> Absorption Enhancement and Sulfite Oxidation Inhibition via a Match Strategy in Na ₂ SO ₃ Solution from a Wet Flue Gas Denitration System. ACS ES&T Engineering, 2021, 1, 100-109.	3.7	5
131	Sustained-release of interlayer chloride in iron oxychloride for mercury oxidation from industrial flue gas. Chemical Engineering Journal, 2022, 429, 132502.	6.6	5
132	Removal Characteristics of Hydrogen Sulfide in Biofilters with Fibrous Peat and Resin. , 2008, , .		3
133	Removal of elemental mercury with Mn/Mo/Ru/Al2O3 membrane catalytic system. Frontiers of Environmental Science and Engineering, 2013, 7, 464-473.	3.3	3
134	Flower-like Co3O4 Catalysts for Efficient Catalytic Oxidation of Multi-Pollutants from Diesel Exhaust. Catalysts, 2022, 12, 527.	1.6	2
135	Induced adsorption and agglomeration under bipolar corona discharge to enhance the simultaneous removal of trace mercury and fine particles. Fuel, 2022, 326, 125069.	3.4	2
136	Preliminary Study on Oxidation of Elemental Mercury in the Presence of Gaseous Oxidants. , 2008, , .		0
137	Buffer effect of MgO on Na2SO3 to stabilize S(IV) for the enhancement in simultaneous absorption of NOx and SO2 from non-ferrous smelting gas. Environmental Science and Pollution Research. O	2.7	0