
Muhammad Rauf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6138279/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phenylenediamine-Based FeN _{<i>x</i>} /C Catalyst with High Activity for Oxygen Reduction in Acid Medium and Its Active-Site Probing. Journal of the American Chemical Society, 2014, 136, 10882-10885.	13.7	566
2	Sâ€Đoping of an Fe/N/C ORR Catalyst for Polymer Electrolyte Membrane Fuel Cells with High Power Density. Angewandte Chemie - International Edition, 2015, 54, 9907-9910.	13.8	396
3	New Strategy for Polysulfide Protection Based on Atomic Layer Deposition of TiO ₂ onto Ferroelectricâ€Encapsulated Cathode: Toward Ultrastable Freeâ€Standing Room Temperature Sodium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1705537.	14.9	167
4	Insight into the different ORR catalytic activity of Fe/N/C between acidic and alkaline media: Protonation of pyridinic nitrogen. Electrochemistry Communications, 2016, 73, 71-74.	4.7	116
5	Controllable synthesis of graphitic carbon nitride nanomaterials for solar energy conversion and environmental remediation: the road travelled and the way forward. Catalysis Science and Technology, 2018, 8, 4576-4599.	4.1	99
6	Constructing a Triple-Phase Interface in Micropores to Boost Performance of Fe/N/C Catalysts for Direct Methanol Fuel Cells. ACS Energy Letters, 2017, 2, 645-650.	17.4	89
7	Aminothiazole-derived N,S,Fe-doped graphene nanosheets as high performance electrocatalysts for oxygen reduction. Chemical Communications, 2015, 51, 17092-17095.	4.1	85
8	Gas diffusion electrodes for H2O2 production and their applications for electrochemical degradation of organic pollutants in water: A review. Science of the Total Environment, 2021, 759, 143459.	8.0	70
9	Surface Fluorination to Boost the Stability of the Fe/N/C Cathode in Proton Exchange Membrane Fuel Cells. ChemElectroChem, 2018, 5, 1914-1921.	3.4	61
10	Non-precious nanostructured materials by electrospinning and their applications for oxygen reduction in polymer electrolyte membrane fuel cells. Journal of Power Sources, 2018, 408, 17-27.	7.8	45
11	Facile one-pot synthesis of mesoporous g-C ₃ N ₄ nanosheets with simultaneous iodine doping and N-vacancies for efficient visible-light-driven H ₂ evolution performance. Catalysis Science and Technology, 2020, 10, 549-559.	4.1	39
12	A Critical Review on Crystal Growth Techniques for Scalable Deposition of Photovoltaic Perovskite Thin Films. Materials, 2020, 13, 4851.	2.9	38
13	Nitrogen-doped carbon nanotubes with encapsulated Fe nanoparticles as efficient oxygen reduction catalyst for alkaline membrane direct ethanol fuel cells. Carbon, 2017, 125, 605-613.	10.3	36
14	Constructing canopy-shaped molecular architectures to create local Pt surface sites with high tolerance to H ₂ S and CO for hydrogen electrooxidation. Energy and Environmental Science, 2018, 11, 166-171.	30.8	32
15	Suppression Effect of Small Organic Molecules on Oxygen Reduction Activity of Fe/N/C Catalysts. ACS Energy Letters, 2018, 3, 1396-1401.	17.4	31
16	Plasma enhanced atomic-layer-deposited nickel oxide on Co3O4 arrays as highly active electrocatalyst for oxygen evolution reaction. Journal of Power Sources, 2021, 481, 228925.	7.8	31
17	N-Doped porous tremella-like Fe ₃ C/C electrocatalysts derived from metal–organic frameworks for oxygen reduction reaction. Dalton Transactions, 2020, 49, 797-807.	3.3	29
18	Facile Synthesis of Mayenite Electride Nanoparticles Encapsulated in Graphitic Shells Like Carbon Nano Onions: Non-noble-metal Electrocatalysts for Oxygen Reduction Reaction (ORR). Frontiers in Chemistry, 2019, 7, 934.	3.6	27

Muhammad Rauf

#	Article	IF	CITATIONS
19	Noble metal-free NiCo2S4/CN sheet-on-sheet heterostructure for highly efficient visible-light-driven photocatalytic hydrogen evolution. Journal of Alloys and Compounds, 2021, 853, 157284.	5.5	26
20	Gaseous bubble-assisted in-situ construction of worm-like porous g-C3N4 with superior visible light photocatalytic performance. Applied Catalysis A: General, 2019, 573, 13-21.	4.3	24
21	Breaking the Limitation of Elevated Coulomb Interaction in Crystalline Carbon Nitride for Visible and Nearâ€Infrared Light Photoactivity. Advanced Science, 2022, 9, .	11.2	22
22	Broad band white-light-emitting Y5Si3O12N:Ce3+/Dy3+ oxonitridosilicate phosphors for solid state lighting applications. Journal of Luminescence, 2021, 229, 117687.	3.1	17
23	On the Interaction of Surfactants with Galliumâ€Based Liquid Metals. ChemistrySelect, 2021, 6, 10625-10636.	1.5	16
24	Highly stable N-containing polymer-based Fe/Nx/C electrocatalyst for alkaline anion exchange membrane fuel cell applications. Progress in Natural Science: Materials International, 2022, 32, 27-33.	4.4	11
25	Novel Heteroatom-Doped Fe/N/C Electrocatalysts With Superior Activities for Oxygen Reduction Reaction in Both Acid and Alkaline Solutions. Frontiers in Chemistry, 2020, 8, 78.	3.6	10
26	Zeolitic-imidazolate frameworks-derived Co3S4/NiS@Ni foam heterostructure as highly efficient electrocatalyst for oxygen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 13616-13628.	7.1	9
27	Liquid-inlet online electrochemical mass spectrometry for the in operando monitoring of direct ethanol fuel cells. Electrochemistry Communications, 2018, 87, 91-95.	4.7	7
28	Revealing the concentration of hydrogen peroxide in fuel cell catalyst layers by an in-operando approach. Chinese Journal of Catalysis, 2022, 43, 1918-1926.	14.0	7
29	3-Dimensional membrane capsules: Synthesis modulations for the remediation of environmental pollutants $\hat{a} \in A$ critical review. Critical Reviews in Environmental Science and Technology, 2022, 52,	12.8	6