Muhammad Aamir Shehzad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6138183/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-performance bipolar membrane for electrochemical water electrolysis. Journal of Membrane Science, 2022, 656, 120660.	4.1	11
2	Self-aggregating cationic-chains enable alkaline stable ion-conducting channels for anion-exchange membrane fuel cells. Journal of Materials Chemistry A, 2021, 9, 327-337.	5.2	116
3	Shielded goethite catalyst that enables fast water dissociation in bipolar membranes. Nature Communications, 2021, 12, 9.	5.8	49
4	Cation–dipole interaction that creates ordered ion channels in an anion exchange membrane for fast <scp>OH</scp> ^{â^`} conduction. AICHE Journal, 2021, 67, e17133.	1.8	53
5	A Review of Nanostructured Ionâ€Exchange Membranes. Advanced Materials Technologies, 2021, 6, 2001171.	3.0	25
6	Fast Bulky Anion Conduction Enabled by Free Shuttling Phosphonium Cations. Research, 2021, 2021, 9762709.	2.8	11
7	Anion exchange membranes with fast ion transport channels driven by cation-dipole interactions for alkaline fuel cells. Journal of Membrane Science, 2021, 634, 119404.	4.1	51
8	Efficient Ion Sieving in Covalent Organic Framework Membranes with Subâ€⊋â€Nanometer Channels. Advanced Materials, 2021, 33, e2104404.	11.1	131
9	Exploring H-bonding interaction to enhance proton permeability of an acid-selective membrane. Journal of Membrane Science, 2021, 637, 119650.	4.1	13
10	3Dâ€Zipped Interface: In Situ Covalent‣ocking for High Performance of Anion Exchange Membrane Fuel Cells. Advanced Science, 2021, 8, e2102637.	5.6	21
11	Electro-nanofiltration membranes with positively charged polyamide layer for cations separation. Journal of Membrane Science, 2020, 594, 117453.	4.1	57
12	Improving fuel cell performance of an anion exchange membrane by terminal pending bis-cations on a flexible side chain. Journal of Membrane Science, 2020, 595, 117483.	4.1	48
13	Covalent bonding-triggered pore-filled membranes for alkaline fuel cells. Journal of Membrane Science, 2020, 597, 117776.	4.1	9
14	La ₄ NiLiO ₈ -Shielded Layered Cathode Materials for Emerging High-Performance Safe Batteries. ACS Applied Materials & Interfaces, 2020, 12, 826-835.	4.0	17
15	A first report on ex-situ synthesis and utilization of pure La4NiLiO8 in emerging high-performance safe batteries. Journal of Alloys and Compounds, 2020, 821, 153208.	2.8	6
16	Ti-exchanged UiO-66-NH2–containing polyamide membranes with remarkable cation permselectivity. Journal of Membrane Science, 2020, 615, 118608.	4.1	57
17	Anion permselective membranes with chemically-bound carboxylic polymer layer for fast anion separation. Journal of Membrane Science, 2020, 614, 118553.	4.1	29
18	Beneficial Use of a Coordination Complex As the Junction Catalyst in a Bipolar Membrane. ACS Applied Energy Materials, 2020, 3, 5765-5773.	2.5	25

#	Article	IF	CITATIONS
19	Engineering Leaf-Like UiO-66-SO3H Membranes for Selective Transport of Cations. Nano-Micro Letters, 2020, 12, 51.	14.4	64
20	Biomimetic Nanocones that Enable High Ion Permselectivity. Angewandte Chemie, 2019, 131, 12776-12784.	1.6	20
21	Biomimetic Nanocones that Enable High Ion Permselectivity. Angewandte Chemie - International Edition, 2019, 58, 12646-12654.	7.2	47
22	In-situ crosslinked SPPO/PVA composite membranes for alkali recovery via diffusion dialysis. Journal of Membrane Science, 2019, 590, 117267.	4.1	32
23	Water-Dissociation-Assisted Electrolysis for Hydrogen Production in a Salinity Power Cell. ACS Sustainable Chemistry and Engineering, 2019, 7, 13023-13030.	3.2	21
24	SPPO-based cation exchange membranes with a positively charged layer for cation fractionation. Desalination, 2019, 472, 114145.	4.0	26
25	Ionomer Cross-Linking Immobilization of Catalyst Nanoparticles for High Performance Alkaline Membrane Fuel Cells. Chemistry of Materials, 2019, 31, 7812-7820.	3.2	57
26	Electro-Driven in Situ Construction of Functional Layer Using Amphoteric Molecule: The Role of Tryptophan in Ion Sieving. ACS Applied Materials & amp; Interfaces, 2019, 11, 36626-36637.	4.0	17
27	Comb-shaped anion exchange membrane with densely grafted short chains or loosely grafted long chains?. Journal of Membrane Science, 2019, 585, 150-156.	4.1	52
28	Highly Cation Permselective Metal–Organic Framework Membranes with Leaf‣ike Morphology. ChemSusChem, 2019, 12, 2593-2597.	3.6	61
29	Biomimetic mitochondrial nanostructures boost the battery performance. Sustainable Energy and Fuels, 2019, 3, 2015-2023.	2.5	4
30	Angioplasty mimetic stented ion transport channels construct durable high-performance membranes. Journal of Materials Chemistry A, 2019, 7, 10030-10040.	5.2	12
31	<i>110th Anniversary</i> : Unleashing the Full Potential of Quinones for High Performance Aqueous Organic Flow Battery. Industrial & Engineering Chemistry Research, 2019, 58, 3994-3999.	1.8	25
32	Cation exchange membrane integrated with cationic and anionic layers for selective ion separation via electrodialysis. Desalination, 2019, 458, 25-33.	4.0	53
33	Multistage-batch electrodialysis to concentrate high-salinity solutions: Process optimisation, water transport, and energy consumption. Journal of Membrane Science, 2019, 570-571, 245-257.	4.1	81
34	Anion exchange membranes with branched ionic clusters for fuel cells. Journal of Materials Chemistry A, 2018, 6, 5993-5998.	5.2	70
35	Complexation Electrodialysis as a general method to simultaneously treat wastewaters with metal and organic matter. Chemical Engineering Journal, 2018, 348, 952-959.	6.6	48
36	Achieving high anion conductivity by densely grafting of ionic strings. Journal of Membrane Science, 2018, 559, 35-41.	4.1	38

#	Article	IF	CITATIONS
37	A benzyltetramethylimidazolium-based membrane with exceptional alkaline stability in fuel cells: role of its structure in alkaline stability. Journal of Materials Chemistry A, 2018, 6, 527-534.	5.2	101
38	Beneficial use of rotatable-spacer side-chains in alkaline anion exchange membranes for fuel cells. Energy and Environmental Science, 2018, 11, 3472-3479.	15.6	196
39	Ammonia capture by water splitting and hollow fiber extraction. Chemical Engineering Science, 2018, 192, 211-217.	1.9	25
40	Hierarchically structured porous anion exchange membranes containing zwetterionic pores for ion separation. Journal of Membrane Science, 2017, 537, 32-41.	4.1	30
41	Graphene oxide embedded "three-phase―membrane to beat "trade-off―in acid recovery. Journal of Membrane Science, 2016, 520, 630-638.	4.1	30
42	In situ solution-phase polymerization and chemical vapor deposition of polyanilne on microporous cellulose ester membranes: AFM and electrical conductivity studies. Synthetic Metals, 2015, 200, 164-171.	2.1	17