Yongfeng Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/613805/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Green Stereoregular Polymerization of Poly(methyl methacrylate)s Through Vesicular Catalysis. CCS Chemistry, 2022, 4, 1337-1346.	7.8	13
2	Toward Hydrogenâ€Free and Dendriteâ€Free Aqueous Zinc Batteries: Formation of Zincophilic Protective Layer on Zn Anodes. Advanced Science, 2022, 9, e2104866.	11.2	118
3	ROSâ€responsive thioetherâ€containing hyperbranched polymer micelles for lightâ€triggered drug release. SmartMat, 2022, 3, 522-531.	10.7	16
4	Coarse-Grained Model of Thiol–Epoxy-Based Alternating Copolymers in Explicit Solvents. Journal of Physical Chemistry B, 2022, 126, 1830-1841.	2.6	1
5	Regioisomer-Directed Self-Assembly of Alternating Copolymers for Highly Enhanced Photocatalytic H ₂ Evolution. ACS Macro Letters, 2022, 11, 434-440.	4.8	4
6	Membraneâ€Bound Inwardâ€Growth of Artificial Cytoskeletons and Their Selective Disassembly. Angewandte Chemie, 2022, 134, .	2.0	0
7	Membraneâ€Bound Inwardâ€Growth of Artificial Cytoskeletons and Their Selective Disassembly. Angewandte Chemie - International Edition, 2022, 61, .	13.8	1
8	The roles of polymers in mRNA delivery. Matter, 2022, 5, 1670-1699.	10.0	20
9	Visible light-controlled living cationic polymerization of methoxystyrene. Nature Communications, 2022, 13, .	12.8	19
10	Boosting the Zn-ion transfer kinetics to stabilize the Zn metal interface for high-performance rechargeable Zn-ion batteries. Journal of Materials Chemistry A, 2021, 9, 16814-16823.	10.3	86
11	A supramolecular single-site photocatalyst based on multi-to-one Förster resonance energy transfer. Chemical Communications, 2021, 57, 4174-4177.	4.1	12
12	Asymmetric Vesicles Self-Assembled by Amphiphilic Sequence-Controlled Polymers. ACS Macro Letters, 2021, 10, 894-900.	4.8	7
13	Single-Metal-Atom Polymeric Unimolecular Micelles for Switchable Photocatalytic H ₂ Evolution. CCS Chemistry, 2021, 3, 1963-1971.	7.8	27
14	A shish-kebab-like supramolecular polymer and its light-responsive self-assembly into nanofibers. Polymer Chemistry, 2021, 12, 1425-1428.	3.9	3
15	pH-Controlled Stereoregular Polymerization of Poly(methyl methacrylate) in Vesicle Membranes. Langmuir, 2021, 37, 12746-12752.	3.5	1
16	Ordered Bicontinuous Mesoporous Polymeric Semiconductor Photocatalyst. ACS Nano, 2020, 14, 13652-13662.	14.6	45
17	Computational design of Janus polymersomes with controllable fission from double emulsions. Physical Chemistry Chemical Physics, 2020, 22, 24934-24942.	2.8	5
18	<i>In silico</i> study of structure and water dynamics in CNT/polyamide nanocomposite reverse osmosis membranes. Physical Chemistry Chemical Physics, 2020, 22, 22324-22331	2.8	6

#	Article	IF	CITATIONS
19	Multimode Selfâ€Oscillating Vesicle Transformers. Angewandte Chemie, 2020, 132, 17273-17277.	2.0	4
20	Porphyrin Alternating Copolymer Vesicles for Photothermal Drug-Resistant Bacterial Ablation and Wound Disinfection. ACS Applied Bio Materials, 2020, 3, 9117-9125.	4.6	15
21	Multimode Selfâ€Oscillating Vesicle Transformers. Angewandte Chemie - International Edition, 2020, 59, 17125-17129.	13.8	23
22	Poly(ionic liquid)-based polymer composites as high-performance solid-state electrolytes: benefiting from nanophase separation and alternating polymer architecture. Chemical Communications, 2020, 56, 7929-7932.	4.1	15
23	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-1915.	5.9	117
24	Scalable preparation of crystalline nanorods through sequential polymerization-induced and crystallization-driven self-assembly of alternating copolymers. Polymer Chemistry, 2020, 11, 2312-2317.	3.9	18
25	High- <i>χ</i> alternating copolymers for accessing sub-5 nm domains <i>via</i> simulations. Physical Chemistry Chemical Physics, 2020, 22, 5577-5583.	2.8	12
26	Multilayer onionâ€like vesicles selfâ€assembled from amphiphilic hyperbranched multiarm copolymers via simulation. Journal of Polymer Science, 2020, 58, 704-715.	3.8	8
27	InÂsitu supramolecular polymerization-enhanced self-assembly of polymer vesicles for highly efficient photothermal therapy. Nature Communications, 2020, 11, 1724.	12.8	122
28	Musselâ€Inspired Alternating Copolymer as a Highâ€Performance Adhesive Material Both at Dry and Underâ€Seawater Conditions. Macromolecular Rapid Communications, 2020, 41, e2000055.	3.9	33
29	A Supramolecular Janus Hyperbranched Polymer and Its Electrochemically Responsive Self-Assembly Behavior. Acta Chimica Sinica, 2020, 78, 528.	1.4	5
30	Shape Transformations of Vesicles Self-Assembled from Amphiphilic Hyperbranched Multiarm Copolymers via Simulation. Langmuir, 2019, 35, 6929-6938.	3.5	17
31	Molecular dynamics simulation studies of the structure and antifouling performance of a gradient polyamide membrane. Physical Chemistry Chemical Physics, 2019, 21, 19995-20002.	2.8	16
32	MembrFactory: A Force Field and composition Double Independent Universal Tool for Constructing Polyamide Reverse Osmosis Membranes. Journal of Computational Chemistry, 2019, 40, 2432-2438.	3.3	9
33	Facile Synthesis of a H ₂ O ₂ -Responsive Alternating Copolymer Bearing Thioether Side Groups for Drug Delivery and Controlled Release. ACS Omega, 2019, 4, 17600-17606.	3.5	18
34	Multimicelle aggregate mechanism for spherical multimolecular micelles: from theories, characteristics and properties to applications. Materials Chemistry Frontiers, 2019, 3, 1994-2009.	5.9	35
35	Stimuli-responsive nanodrug self-assembled from amphiphilic drug-inhibitor conjugate for overcoming multidrug resistance in cancer treatment. Theranostics, 2019, 9, 5755-5768.	10.0	43
36	Multigeometry Nanoparticles from the Orthogonal Self-Assembly of Block Alternating Copolymers via Simulation. Journal of Physical Chemistry B, 2019, 123, 8333-8340.	2.6	11

#	Article	IF	CITATIONS
37	Ultrathin Metal–Organic Framework Nanosheets with Ultrahigh Loading of Single Pt Atoms for Efficient Visibleâ€Lightâ€Driven Photocatalytic H ₂ Evolution. Angewandte Chemie, 2019, 131, 10304-10309.	2.0	68
38	Ultrathin Metal–Organic Framework Nanosheets with Ultrahigh Loading of Single Pt Atoms for Efficient Visibleâ€Lightâ€Driven Photocatalytic H ₂ Evolution. Angewandte Chemie - International Edition, 2019, 58, 10198-10203.	13.8	404
39	A single-ion conducting hyperbranched polymer as a high performance solid-state electrolyte for lithium ion batteries. Chemical Communications, 2019, 55, 6715-6718.	4.1	57
40	Solution Self-Assembly of an Alternating Copolymer toward Hollow Carbon Nanospheres with Uniform Micropores. ACS Macro Letters, 2019, 8, 331-336.	4.8	28
41	Frontispiece: Selfâ€assembly of Amphiphilic Alternating Copolymers. Chemistry - A European Journal, 2019, 25, .	3.3	1
42	Solution self-assembly behavior of rod-alt-coil alternating copolymers via simulations. Physical Chemistry Chemical Physics, 2019, 21, 25148-25157.	2.8	11
43	Phase diagrams, mechanisms and unique characteristics of alternating-structured polymer self-assembly via simulations. Science China Chemistry, 2019, 62, 226-237.	8.2	32
44	Selfâ€assembly of Amphiphilic Alternating Copolymers. Chemistry - A European Journal, 2019, 25, 4255-4264.	3.3	46
45	Self-assembly of alternating copolymer vesicles for the highly selective, sensitive and visual detection and quantification of aqueous Hg2+. Chemical Engineering Journal, 2019, 358, 101-109.	12.7	97
46	Hyperbranched Multiarm Copolymers with a UCST Phase Transition: Topological Effect and the Mechanism. Langmuir, 2018, 34, 3058-3067.	3.5	28
47	Quantitative structure–activity relationship for the oxidation of aromatic organic contaminants in water by TAML/H2O2. Water Research, 2018, 140, 354-363.	11.3	69
48	Janus quantum dot vesicles generated through membrane fusion. Materials Chemistry Frontiers, 2018, 2, 1040-1045.	5.9	10
49	TiO ₂ /UV-assisted rhodamine B degradation: putative pathway and identification of intermediates by UPLC/MS. Environmental Technology (United Kingdom), 2018, 39, 1533-1543.	2.2	52
50	Fluorescent sensor based models for the detection of environmentally-related toxic heavy metals. Science of the Total Environment, 2018, 615, 476-485.	8.0	303
51	Understanding the temperature effect on transport dynamics and structures in polyamide reverse osmosis system <i>via</i> molecular dynamics simulations. Physical Chemistry Chemical Physics, 2018, 20, 29996-30005.	2.8	20
52	Oxygen and Pt(II) self-generating conjugate for synergistic photo-chemo therapy of hypoxic tumor. Nature Communications, 2018, 9, 2053.	12.8	219
53	Emulsionâ€Assisted Polymerizationâ€Induced Hierarchical Selfâ€Assembly of Giant Sea Urchinâ€Iike Aggregates on a Large Scale. Angewandte Chemie, 2018, 130, 8175-8179.	2.0	18
54	Emulsionâ€Assisted Polymerizationâ€Induced Hierarchical Selfâ€Assembly of Giant Sea Urchinâ€like Aggregates on a Large Scale. Angewandte Chemie - International Edition, 2018, 57, 8043-8047.	13.8	45

#	Article	IF	CITATIONS
55	"Installation art―like hierarchical self-assembly of giant polymeric elliptical platelets. Nanoscale, 2017, 9, 2145-2149.	5.6	6
56	Computer simulation studies of the influence of side alkyl chain on glass transition behavior of carbazole trimer. Science China Chemistry, 2017, 60, 377-384.	8.2	1
57	Self-crosslinking and injectable hyaluronic acid/RGD-functionalized pectin hydrogel for cartilage tissue engineering. Carbohydrate Polymers, 2017, 166, 31-44.	10.2	135
58	Construction of Lightâ€Harvesting Polymeric Vesicles in Aqueous Solution with Spatially Separated Donors and Acceptors. Macromolecular Rapid Communications, 2017, 38, 1600818.	3.9	14
59	Monolithic cobalt-doped carbon aerogel for efficient catalytic activation of peroxymonosulfate in water. Journal of Hazardous Materials, 2017, 332, 195-204.	12.4	103
60	Preparation of Monodisperse Hyper-Crosslinking Polymer Nanoparticles for Highly Efficient CO ₂ Adsorption. Macromolecular Chemistry and Physics, 2017, 218, 1700001.	2.2	3
61	Facile Preparation of Waterâ€Soluble and Cytocompatible Smallâ€Sized Chitosanâ€Polydopamine Nanoparticles. Chinese Journal of Chemistry, 2017, 35, 931-937.	4.9	9
62	Polymer Vesicle Sensor for Visual and Sensitive Detection of SO ₂ in Water. Langmuir, 2017, 33, 340-346.	3.5	31
63	Computer Simulation Studies on the pH-Responsive Self-Assembly of Amphiphilic Carboxy-Terminated Polyester Dendrimers in Aqueous Solution. Langmuir, 2017, 33, 388-399.	3.5	22
64	Supramolecular cisplatin-vorinostat nanodrug for overcoming drug resistance in cancer synergistic therapy. Journal of Controlled Release, 2017, 266, 36-46.	9.9	54
65	Asymmetric Polymersomes from an Oil-in-Oil Emulsion: A Computer Simulation Study. Langmuir, 2017, 33, 10084-10093.	3.5	8
66	Self-assembly and functionalization of alternating copolymer vesicles. Polymer Chemistry, 2017, 8, 4688-4695.	3.9	40
67	A dissipative particle dynamics simulation study on phase diagrams for the self-assembly of amphiphilic hyperbranched multiarm copolymers in various solvents. Soft Matter, 2017, 13, 6178-6188.	2.7	39
68	Light-triggered reversible "one-to-two―morphological transition in a "latent double-amphiphilic― linear-hyperbranched supramolecular block copolymer. Chemical Communications, 2016, 52, 8223-8226.	4.1	15
69	One-pot preparation of pomegranate-like polydopamine stabilized small gold nanoparticles with superior stability for recyclable nanocatalysts. RSC Advances, 2016, 6, 40698-40705.	3.6	15
70	Hierarchical Selfâ€Assembly of a Dandelion‣ike Supramolecular Polymer into Nanotubes for use as Highly Efficient Aqueous Lightâ€Harvesting Systems. Advanced Functional Materials, 2016, 26, 7652-7661.	14.9	104
71	Molecular dynamics simulation studies of hyperbranched polyglycerols and their encapsulation behaviors of small drug molecules. Physical Chemistry Chemical Physics, 2016, 18, 22446-22457.	2.8	8
72	An Injectable Enzymatically Crosslinked Carboxymethylated Pullulan/Chondroitin Sulfate Hydrogel for Cartilage Tissue Engineering. Scientific Reports, 2016, 6, 20014.	3.3	145

#	Article	IF	CITATIONS
73	HBP Builder: A Tool to Generate Hyperbranched Polymers and Hyperbranched Multi-Arm Copolymers for Coarse-grained and Fully Atomistic Molecular Simulations. Scientific Reports, 2016, 6, 26264.	3.3	10
74	Proteinâ€Framed Multiâ€Porphyrin Micelles for a Hybrid Natural–Artificial Lightâ€Harvesting Nanosystem. Angewandte Chemie - International Edition, 2016, 55, 7952-7957.	13.8	123
75	A srikaya-like light-harvesting antenna based on graphene quantum dots and porphyrin unimolecular micelles. Chemical Communications, 2016, 52, 9394-9397.	4.1	30
76	Proteinâ€Framed Multiâ€Porphyrin Micelles for a Hybrid Natural–Artificial Lightâ€Harvesting Nanosystem. Angewandte Chemie, 2016, 128, 8084-8089.	2.0	28
77	Ultrasound-responsive ultrathin multiblock copolyamide vesicles. Nanoscale, 2016, 8, 4922-4926.	5.6	31
78	Crosslinked chitosan nanofiber mats fabricated by one-step electrospinning and ion-imprinting methods for metal ions adsorption. Science China Chemistry, 2016, 59, 95-105.	8.2	35
79	Hybrid Vesicles with Alterable Fully Covered Armors of Nanoparticles: Fabrication, Catalysis, and Surface-Enhanced Raman Scattering. Langmuir, 2016, 32, 991-996.	3.5	20
80	Synthesis of a Linear-Hyperbranched Supramolecular Polymer and Its Light-Responsive Self-Assembly Behavior. Acta Chimica Sinica, 2016, 74, 415.	1.4	8
81	Self-Crosslinking and Surface-Engineered Polymer Vesicles. Small, 2015, 11, 4485-4490.	10.0	23
82	A dumbbell-like supramolecular triblock copolymer and its self-assembly of light-responsive vesicles. RSC Advances, 2015, 5, 47762-47765.	3.6	19
83	Ultrathin Alternating Copolymer Nanotubes with Readily Tunable Surface Functionalities. Angewandte Chemie - International Edition, 2015, 54, 3621-3625.	13.8	65
84	Scalable one-step synthesis of TiO ₂ /WO ₃ films on titanium plates with an efficient electron storage ability. Journal of Materials Chemistry A, 2015, 3, 10195-10198.	10.3	14
85	Preparation of anion-exchangeable polymer vesicles through the self-assembly of hyperbranched polymeric ionic liquids. Chemical Communications, 2015, 51, 7234-7237.	4.1	28
86	Dissipative particle dynamics simulation study on self-assembly of amphiphilic hyperbranched multiarm copolymers with different degrees of branching. Soft Matter, 2015, 11, 8460-8470.	2.7	26
87	Functional Supramolecular Polymers for Biomedical Applications. Advanced Materials, 2015, 27, 498-526.	21.0	429
88	Hyperbranched polymer vesicles: from self-assembly, characterization, mechanisms, and properties to applications. Chemical Society Reviews, 2015, 44, 3874-3889.	38.1	247
89	Dissipative Particle Dynamics Simulation Study on Vesicles Selfâ€Assembled from Amphiphilic Hyperbranched Multiarm Copolymers. Chemistry - an Asian Journal, 2014, 9, 2281-2288. 	3.3	22
90	Supramolecular Dendritic Polymers: From Synthesis to Applications. Accounts of Chemical Research, 2014, 47, 2006-2016.	15.6	181

#	Article	IF	CITATIONS
91	Synthesis of monodisperse nanocolloidal microspheres with controlled size by vesicle bilayer templating. Chemical Communications, 2014, 50, 7363-7366.	4.1	13
92	Combination of Small Molecule Prodrug and Nanodrug Delivery: Amphiphilic Drug–Drug Conjugate for Cancer Therapy. Journal of the American Chemical Society, 2014, 136, 11748-11756.	13.7	628
93	Synthesis and Self-Assembly of Amphiphilic Aptamer-Functionalized Hyperbranched Multiarm Copolymers for Targeted Cancer Imaging. Biomacromolecules, 2014, 15, 1828-1836.	5.4	51
94	A redox-responsive cationic supramolecular polymer constructed from small molecules as a promising gene vector. Chemical Communications, 2013, 49, 9845.	4.1	69
95	Synthesis and characterization of a water-soluble nylon copolyamide. Polymer, 2013, 54, 4171-4176.	3.8	17
96	Dissipative particle dynamics simulation study on the mechanisms of self-assembly of large multimolecular micelles from amphiphilic dendritic multiarm copolymers. Soft Matter, 2013, 9, 3293.	2.7	78
97	A Supramolecular Janus Hyperbranched Polymer and Its Photoresponsive Self-Assembly of Vesicles with Narrow Size Distribution. Journal of the American Chemical Society, 2013, 135, 4765-4770.	13.7	330
98	Reversible photoisomerization of azobenzene-containing polymeric systems driven by visible light. Polymer Chemistry, 2013, 4, 912.	3.9	74
99	Cytomimetic Large-Scale Vesicle Aggregation and Fusion Based on Host–Guest Interaction. Langmuir, 2012, 28, 2066-2072.	3.5	38
100	A Linear-Hyperbranched Supramolecular Amphiphile and Its Self-Assembly into Vesicles with Great Ductility. Journal of the American Chemical Society, 2012, 134, 762-764.	13.7	228
101	Influence of the Mole Ratio of the Interacting to the Stabilizing Portion (RI/S) in Hyperbranched Polymers on CaCO3 Crystallization: Synthesis of Highly Monodisperse Microspheres. Crystal Growth and Design, 2012, 12, 4053-4059.	3.0	8
102	Biocompatible or biodegradable hyperbranched polymers: from self-assembly to cytomimetic applications. Chemical Society Reviews, 2012, 41, 5986.	38.1	221
103	Enhanced gene transfection efficiency of PDMAEMA by incorporating hydrophobic hyperbranched polymer cores: effect of degree of branching. Polymer Chemistry, 2012, 3, 3324.	3.9	37
104	Photo-reversible supramolecular hyperbranched polymer based on host–guest interactions. Polymer Chemistry, 2011, 2, 2771.	3.9	108
105	Influence of branching architecture on polymer properties. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 1277-1286.	2.1	118
106	Molecular Selfâ€Assembly of a Homopolymer: An Alternative To Fabricate Drugâ€Đelivery Platforms for Cancer Therapy. Angewandte Chemie - International Edition, 2011, 50, 9162-9166.	13.8	100
107	Reversible and Large‣cale Cytomimetic Vesicle Aggregation: Lightâ€Responsive Host–Guest Interactions. Angewandte Chemie - International Edition, 2011, 50, 10352-10356.	13.8	110
108	Supramolecular self-assembly and controllable drug release of thermosensitive hyperbranched multiarm copolymers. Science China Chemistry, 2010, 53, 487-494.	8.2	14

#	Article	IF	CITATIONS
109	Synthesis of cationic hyperbranched multiarm copolymer and its application in self-reducing and stabilizing gold nanoparticles. Science China Chemistry, 2010, 53, 1114-1121.	8.2	15
110	Bioreducible unimolecular micelles based on amphiphilic multiarm hyperbranched copolymers for triggered drug release. Science China Chemistry, 2010, 53, 2497-2508.	8.2	31
111	Selfâ€Assembly of Hyperbranched Polymers and Its Biomedical Applications. Advanced Materials, 2010, 22, 4567-4590.	21.0	503
112	Rendering Hyperbranched Polyglycerol Adjustably Thermoresponsive by Adamantyl Modification and Host/Guest Interaction. Macromolecular Chemistry and Physics, 2010, 211, 1940-1946.	2.2	23
113	Flocculationâ€resistant multimolecular micelles with thermoresponsive corona from dendritic heteroarm star copolymers. Journal of Polymer Science Part A, 2010, 48, 4428-4438.	2.3	12
114	Controlled Topological Structure of Copolyphosphates by Adjusting Pendant Groups of Cyclic Phosphate Monomers. Macromolecules, 2010, 43, 8416-8423.	4.8	39
115	Effect of Degree of Branching on the Self-Assembly of Amphiphilic Hyperbranched Multiarm Copolymers. Macromolecules, 2010, 43, 1143-1147.	4.8	64
116	Preparation of polystyrene-grafted titanate nanotubes by in situ atom transfer radical polymerization. Science in China Series B: Chemistry, 2009, 52, 344-350.	0.8	5
117	Drug release property of a pH-responsive double-hydrophilic hyperbranched graft copolymer. Science in China Series B: Chemistry, 2009, 52, 1703-1710.	0.8	19
118	Synthesis and self-assembly of amphiphilic hyperbranched polyglycerols modified with palmitoyl chloride. Journal of Colloid and Interface Science, 2009, 337, 278-284.	9.4	45
119	Supramolecular self-assembly of amphiphilic hyperbranched polymers at all scales and dimensions: progress, characteristics and perspectives. Chemical Communications, 2009, , 1172.	4.1	269
120	Honeycomb-Structured Microporous Films Made from Hyperbranched Polymers by the Breath Figure Method. Langmuir, 2009, 25, 173-178.	3.5	92
121	Synthesis of Hyperbranched Polyphosphates by Self-Condensing Ring-Opening Polymerization of HEEP without Catalyst. Macromolecules, 2009, 42, 4394-4399.	4.8	81
122	Synthesis of AB2 star-shaped miktoarm copolymers and their crystallization behavior. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2008, 3, 186-192.	0.4	0
123	Synthesis and characterization of three-arm star-shaped polyethylene glycols with 1,1,1-trihydroxmethylpropane as cores. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2008, 3, 298-303.	0.4	1
124	Synthesis and supramolecular selfâ€assembly of thermosensitive amphiphilic star copolymers based on a hyperbranched polyether core. Journal of Polymer Science Part A, 2008, 46, 668-681.	2.3	97
125	Facile Fabrication of pHâ€Responsive and Sizeâ€Controllable Polymer Vesicles From a Commercially Available Hyperbranched Polyester. Macromolecular Rapid Communications, 2008, 29, 412-418.	3.9	83
126	Synthesis of a Multi Alternatingâ€Armâ€Containing Dendritic Star Copolymer by RAFT and Cationic Ringâ€Opening Polymerization. Macromolecular Rapid Communications, 2008, 29, 1385-1391.	3.9	15

#	Article	IF	CITATIONS
127	Terminal Modification with 1â€Adamantylamine to Endow Hyperbranched Polyamidoamine with Thermoâ€∤pHâ€Responsive Properties. Macromolecular Rapid Communications, 2008, 29, 1746-1751.	3.9	37
128	Hyperbranched Poly(amidoamine) as the Stabilizer and Reductant To Prepare Colloid Silver Nanoparticles in Situ and Their Antibacterial Activity. Journal of Physical Chemistry C, 2008, 112, 2330-2336.	3.1	138
129	pH-responsive self-assembly of carboxyl-terminated hyperbranched polymers. Physical Chemistry Chemical Physics, 2007, 9, 1255.	2.8	62
130	Temperature-Responsive Phase Transition of Polymer Vesicles:Â Real-Time Morphology Observation and Molecular Mechanism. Journal of Physical Chemistry B, 2007, 111, 1262-1270.	2.6	128
131	Self-Assembly of Large Multimolecular Micelles from Hyperbranched Star Copolymers. Macromolecular Rapid Communications, 2007, 28, 591-596.	3.9	182
132	Real-Time Hierarchical Self-Assembly of Large Compound Vesicles from an Amphiphilic Hyperbranched Multiarm Copolymer. Small, 2007, 3, 1170-1173.	10.0	79
133	Synthesis and characterization of organosoluble aromatic copolyimids. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2007, 2, 107-112.	0.4	0
134	Preparation of Robust Poly(É›-caprolactone) Hollow Spheres with Controlled Biodegradability. Macromolecular Rapid Communications, 2006, 27, 1265-1270.	3.9	21
135	Synthesis and characterization of novel organosoluble aromatic copolyimides. E-Polymers, 2005, 5, .	3.0	2
136	Real-Time Membrane Fission of Giant Polymer Vesicles. Angewandte Chemie - International Edition, 2005, 44, 3223-3226.	13.8	109
137	Direct synthesis of amphiphilic block copolymers from glycidyl methacrylate and poly(ethylene) Tj ETQq1 1 0.78 Polymer Science Part A, 2005, 43, 2038-2047.	4314 rgBT 2.3	/Overlock 29
138	Amphiphilic star-block copolymers based on a hyperbranched core: Synthesis and supramolecular self-assembly. Journal of Polymer Science Part A, 2005, 43, 6534-6544.	2.3	72
139	Synthesis and Size-Controllable Self-Assembly of a Novel Amphiphilic Hyperbranched Multiarm Copolyether. Macromolecules, 2005, 38, 8679-8686.	4.8	124
140	Real-Time Membrane Fusion of Giant Polymer Vesicles. Journal of the American Chemical Society, 2005, 127, 10468-10469.	13.7	147
141	Supramolecular Self-Assembly of Giant Polymer Vesicles with Controlled Sizes. Angewandte Chemie - International Edition, 2004, 43, 4896-4899.	13.8	233
142	Supramolecular Self-Assembly of Macroscopic Tubes. Science, 2004, 303, 65-67.	12.6	434