
Tonghe Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6137139/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration. Acta Biomaterialia, 2019, 84, 98-113.	4.1	174
2	Bioinspired Multichannel Nerve Guidance Conduit Based on Shape Memory Nanofibers for Potential Application in Peripheral Nerve Repair. ACS Nano, 2020, 14, 12579-12595.	7.3	96
3	Exploration of the antibacterial and wound healing potential of a PLGA/silk fibroin based electrospun membrane loaded with zinc oxide nanoparticles. Journal of Materials Chemistry B, 2021, 9, 1452-1465.	2.9	78
4	Synthesis of RGD-peptide modified poly(ester-urethane) urea electrospun nanofibers as a potential application for vascular tissue engineering. Chemical Engineering Journal, 2017, 315, 177-190.	6.6	77
5	Multifunctional bioactive core-shell electrospun membrane capable to terminate inflammatory cycle and promote angiogenesis in diabetic wound. Bioactive Materials, 2021, 6, 2783-2800.	8.6	71
6	Enhancement of Schwann Cells Function Using Graphene-Oxide-Modified Nanofiber Scaffolds for Peripheral Nerve Regeneration. ACS Biomaterials Science and Engineering, 2019, 5, 2444-2456.	2.6	54
7	Covalent grafting of PEG and heparin improves biological performance of electrospun vascular grafts for carotid artery replacement. Acta Biomaterialia, 2021, 119, 211-224.	4.1	54
8	Potential applications of three-dimensional structure of silk fibroin/poly(ester-urethane) urea nanofibrous scaffold in heart valve tissue engineering. Applied Surface Science, 2018, 447, 269-278.	3.1	45
9	Liraglutide-loaded PLGA/gelatin electrospun nanofibrous mats promote angiogenesis to accelerate diabetic wound healing <i>via</i> the modulation of miR-29b-3p. Biomaterials Science, 2020, 8, 4225-4238.	2.6	44
10	Mechanical matching nanofibrous vascular scaffold with effective anticoagulation for vascular tissue engineering. Composites Part B: Engineering, 2020, 186, 107788.	5.9	43
11	PLCL/Silk fibroin based antibacterial nano wound dressing encapsulating oregano essential oil: Fabrication, characterization and biological evaluation. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111352.	2.5	40
12	Incorporation of amoxicillin-loaded organic montmorillonite into poly(ester-urethane) urea nanofibers as a functional tissue engineering scaffold. Colloids and Surfaces B: Biointerfaces, 2017, 151, 314-323.	2.5	35
13	<p>Regulating Preparation Of Functional Alginate-Chitosan Three-Dimensional Scaffold For Skin Tissue Engineering</p> . International Journal of Nanomedicine, 2019, Volume 14, 8891-8903.	3.3	33
14	Facile preparation of a controlled-release tubular scaffold for blood vessel implantation. Journal of Colloid and Interface Science, 2019, 539, 351-360.	5.0	28
15	<p>Electrospun polycaprolactone/collagen nanofibers cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide and genipin facilitate endothelial cell regeneration and may be a promising candidate for vascular scaffolds<:/p>:. International lournal of Nanomedicine. 2019. Volume 14. 2127-2144.</p>	3.3	27
16	Synthesis of cellulose diacetate based copolymer electrospun nanofibers for tissues scaffold. Applied Surface Science, 2018, 443, 374-381.	3.1	26
17	Crimped nanofiber scaffold mimicking tendon-to-bone interface for fatty-infiltrated massive rotator cuff repair. Bioactive Materials, 2022, 16, 149-161.	8.6	24
18	Fabrication of poly(ester-urethane)urea elastomer/gelatin electrospun nanofibrous membranes for potential applications in skin tissue engineering. RSC Advances, 2016, 6, 73636-73644.	1.7	23

Толсне Zhu

#	Article	IF	CITATIONS
19	A bi-layered tubular scaffold for effective anti-coagulant in vascular tissue engineering. Materials and Design, 2020, 194, 108943.	3.3	20
20	Evaluation of a Biocomposite Mesh Modified with Decellularized Human Amniotic Membrane for Intraperitoneal Onlay Mesh Repair. ACS Omega, 2020, 5, 3550-3562.	1.6	19
21	Fabrication and characterization of Antheraea pernyi silk fibroin-blended P(LLA-CL) nanofibrous scaffolds for peripheral nerve tissue engineering. Frontiers of Materials Science, 2017, 11, 22-32.	1.1	17
22	Cowpea-like bi-lineage nanofiber mat for repairing chronic rotator cuff tear and inhibiting fatty infiltration. Chemical Engineering Journal, 2020, 392, 123671.	6.6	17
23	A triple-coated ligament graft to facilitate ligament-bone healing by inhibiting fibrogenesis and promoting osteogenesis. Acta Biomaterialia, 2020, 115, 160-175.	4.1	17
24	Tissue-Engineered Decellularized Allografts for Anterior Cruciate Ligament Reconstruction. ACS Biomaterials Science and Engineering, 2020, 6, 5700-5710.	2.6	16
25	A fabric reinforced small diameter tubular graft for rabbits' carotid artery defect. Composites Part B: Engineering, 2021, 225, 109274.	5.9	16
26	Flurbiprofen axetil loaded coaxial electrospun poly(vinyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 467 Td (pyrrolido characterization, and antiâ€adhesion activity. Journal of Applied Polymer Science, 2015, 132, .	ne)–nai 1.3	nopoly(lacticâ 15
27	A novel elastic and controlled-release poly(ether-ester-urethane)urea scaffold for cartilage regeneration. Journal of Materials Chemistry B, 2020, 8, 4106-4121.	2.9	13
28	Synthesis and characterization of flurbiprofen axetil-loaded electrospun MgAl-LDHs/poly(lactic-co-glycolic acid) composite nanofibers. RSC Advances, 2015, 5, 69423-69429.	1.7	12
29	A facile approach for the fabrication of nano-attapulgite/poly(vinyl pyrrolidone)/biopolymers core–sheath ultrafine fibrous mats for drug controlled release. RSC Advances, 2016, 6, 49817-49823.	1.7	12
30	Electrospinning: An emerging technology to construct polymer-based nanofibrous scaffolds for diabetic wound healing. Frontiers of Materials Science, 2021, 15, 10-35.	1.1	12
31	A regeneration process-matching scaffold with appropriate dynamic mechanical properties and spatial adaptability for ligament reconstruction. Bioactive Materials, 2022, 13, 82-95.	8.6	12
32	Magnolol Hybrid Nanofibrous Mat with Antibacterial, Anti-Inflammatory, and Microvascularized Properties for Wound Treatment. Biomacromolecules, 2022, 23, 1124-1137.	2.6	12
33	Preparation and evaluation of poly(ester-urethane) urea/gelatin nanofibers based on different crosslinking strategies for potential applications in vascular tissue engineering. RSC Advances, 2018, 8, 35917-35927.	1.7	7
34	Preparation of Inorganicâ€Organicâ€Framework Nanoscale Carries as a Potential Platform for Drug Delivery. Advanced Engineering Materials, 2019, 21, 1800626.	1.6	4
35	Macroporous 3D Scaffold with Self-Fitting Capability for Effectively Repairing Massive Rotator Cuff Tear. ACS Biomaterials Science and Engineering, 2021, 7, 904-915.	2.6	4
36	Tendon regeneration induced by umbilical cord graft in a rabbit tendon defect model. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 1009-1018.	1.3	3

Толсне Zhu

#	Article	IF	CITATIONS
37	A Nanofiber Mat With Dual Bioactive Components and a Biomimetic Matrix Structure for Improving Osteogenesis Effect. Frontiers in Chemistry, 2021, 9, 740191.	1.8	3
38	Microporous Spongy Scaffolds Based on Biodegradable Elastic Polyurethanes for the Migration and Growth of Host Cells. ACS Applied Polymer Materials, 2022, 4, 3942-3951.	2.0	3
39	Hydrogel-assisted delivery of lipophilic molecules into aqueous medium for transdermal medication based on environment-specific, regioselective adsorption of graphene oxides. Journal of Materials Chemistry B, 2021, 9, 1804-1810.	2.9	2