List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6136715/publications.pdf Version: 2024-02-01

Δλλεβ

#	Article	IF	CITATIONS
1	Plasmon-Enhanced Refractometry Through Cladding Mode Excitation by a Fiber Bragg Grating in Photonic Crystal Fiber. Journal of Lightwave Technology, 2022, 40, 1121-1129.	4.6	7
2	A quantum key distribution testbed using a plug&play telecom-wavelength single-photon source. Applied Physics Reviews, 2022, 9, .	11.3	24
3	In-Plane Strain Measurement in Composite Structures with Fiber Bragg Grating Written in Side-Hole Elliptical Core Optical Fiber. Materials, 2022, 15, 77.	2.9	6
4	Dual-Wavelength Pumped Highly Birefringent Microstructured Silica Fiber for Widely Tunable Soliton Self-Frequency Shift. Journal of Lightwave Technology, 2021, 39, 3260-3268.	4.6	9
5	Measurement and assignment of double-resonance transitions to the 8900–9100- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi mathvariant="normal">cm </mml:mi> <mml:mrow> <mml:mo>â^² </mml:mo> <mml:mn>1 </mml:mn> </mml:mrow> levels of methane. Physical Review A. 2021, 103.</mml:msup></mml:math>	70% c/mml:ms</td <td>up></td>	up>
6	Sub-Doppler Double-Resonance Spectroscopy of Methane Using a Frequency Comb Probe. Physical Review Letters, 2021, 126, 063001.	7.8	20
7	Method for increasing coupling efficiency between helical-core and standard single-mode fibers. Optics Express, 2021, 29, 5343.	3.4	2
8	Vector Modulation Instability in Highly Birefringent Fibers With Circularly Polarized Eigenmodes. IEEE Photonics Journal, 2021, 13, 1-16.	2.0	1
9	All-normal dispersion supercontinuum vs frequency-shifted solitons pumped at 1560â€nm as seed sources for thulium-doped fiber amplifiers. Optics Express, 2021, 29, 18122.	3.4	2
10	Noise Fingerprints of Fiber Supercontinuum Sources. , 2021, , .		2
11	Temporal fine structure of all-normal dispersion fiber supercontinuum. , 2021, , .		0
12	Simple Approach for Ambiguity-Free Dual-Comb Ranging Using an Intrinsically Modulated Single-Cavity Laser Source. , 2021, , .		0
13	Simple approach for extending the ambiguity-free range of dual-comb ranging. Optics Letters, 2021, 46, 3677.	3.3	8
14	Sensitivity tailoring of an all-fiber bend sensor based on a dual-core fiber unbalanced Michelson interferometer. Optics Express, 2021, 29, 39137.	3.4	4
15	All-Fiber Vector Bending Sensor Based on a Multicore Fiber With Asymmetric Air-Hole Structure. Journal of Lightwave Technology, 2020, 38, 6685-6690.	4.6	14
16	Plug&Play Fiber oupled 73ÂkHz Singleâ€Photon Source Operating in the Telecom Oâ€Band. Advanced Quantum Technologies, 2020, 3, 2000018.	3.9	34
17	Twist Induced Mode Confinement in Partially Open Ring of Holes. Journal of Lightwave Technology, 2020, 38, 1372-1381.	4.6	6
18	Enhancement of spectral response of Bragg gratings written in nanostructured and multi-stepped optical fibers with radially shaped GeO ₂ concentration. Optics Express, 2020, 28, 14774.	3.4	4

#	Article	IF	CITATIONS
19	Temporal fine structure of all-normal dispersion fiber supercontinuum pulses caused by non-ideal pump pulse shapes. Optics Express, 2020, 28, 16579.	3.4	17
20	Bend-induced long period grating in a helical core fiber. Optics Letters, 2020, 45, 1595.	3.3	11
21	Mid-infrared frequency comb covering the 6.5 – 9 μm range with active output power stabilization. , 2020, , .		Ο
22	Commercially available granulates PMMA and PS - potential problems with the production of polymer optical fibers. Photonics Letters of Poland, 2020, 12, 79.	0.4	1
23	Demonstration of supercontinuum and frequency shifted solitons pumped at 1.56 µm as seed sources for Tm-doped fiber amplifiers. EPJ Web of Conferences, 2020, 243, 17002.	0.3	Ο
24	Compact 6.5 - 9 pm Frequency Comb Source for Fourier Transform Spectroscopy. , 2020, , .		0
25	Sub-Doppler Double-Resonance Spectroscopy of Methane Using a Frequency Comb Probe. , 2020, , .		0
26	Selective liquid filling of photonic crystal fibers using two-photon polymerization lithography without post-exposure development. , 2020, , .		1
27	Phase-shifted Bragg grating inscription in photonic crystal fibers by UV phase mask beam stop technique. , 2020, , .		0
28	RE3+:LaALO3 doped luminescent polymer composites. Optical Materials, 2019, 87, 35-41.	3.6	11
29	Praseodymium doped nanocrystals and nanocomposites for application in white light sources. Optical Materials, 2019, 95, 109247.	3.6	8
30	Numerical and Experimental Study on the IR Femtosecond Laser and Phase Mask-Based Grating Inscription in Photonic Crystal Fibers. , 2019, , .		0
31	Compact all-fiber source of coherent linearly polarized octave-spanning supercontinuum based on normal dispersion silica fiber. Scientific Reports, 2019, 9, 12313.	3.3	26
32	Experimental Analysis of Bragg Reflection Peak Splitting in Gratings Fabricated Using a Multiple Order Phase Mask. Sensors, 2019, 19, 433.	3.8	0
33	Polarimetric Sensitivity to Torsion in Spun Highly Birefringent Fibers. Sensors, 2019, 19, 1639.	3.8	6
34	Synthesis of photoluminescent-doped poly(methyl methacrylate). Journal of Thermal Analysis and Calorimetry, 2019, 138, 4445-4451.	3.6	0
35	All-Fiber Source for Generation of Tunable Broadband fCEO-Free Mid-IR Pulses for Laser Spectroscopy Applications. , 2019, , .		0
36	Rare-Earths Activated Polymer Composite Fibers — Technology and Characterization. , 2019, , .		0

#	Article	IF	CITATIONS
37	Method for direct coupling of a semiconductor quantum dot to an optical fiber for single-photon source applications. Optics Express, 2019, 27, 26772.	3.4	24
38	Stabilized all-fiber source for generation of tunable broadband fCEO-free mid-IR frequency comb in the 7 – 9 µm range. Optics Express, 2019, 27, 37435.	3.4	22
39	Ultrabroadband wavelength-swept source based on total mode-locking of an Yb:CaF ₂ laser. Photonics Research, 2019, 7, 182.	7.0	9
40	Determination of the optimal extrusion temperature of the PMMA optical fibers. Photonics Letters of Poland, 2019, 11, 7.	0.4	1
41	Polarimetric sensitivity to torsion and temperature in highly birefringent spun side-hole fibers. , 2019, , \cdot		Ο
42	Decreasing diameter fluctuation of polymer optical fiber with optimized drawing conditions. Materials Research Express, 2018, 5, 056201.	1.6	5
43	Fiber-optic surface plasmon resonance sensor based on spectral phase shift interferometric measurements. Sensors and Actuators B: Chemical, 2018, 257, 602-608.	7.8	6
44	Phase mask-based IR femtosecond grating inscription in a photonic crystal fiber with short focal length cylindrical lens. , 2018, , .		0
45	The Fiber Connection Method Using a Tapered Silica Fiber Tip for Microstructured Polymer Optical Fibers. Fibers, 2018, 6, 4.	4.0	1
46	All-fiber mid-infrared source tunable from 6 to 9 μm based on difference frequency generation in OP-GaP crystal. Optics Express, 2018, 26, 11756.	3.4	31
47	IR femtosecond pulsed laser-based fiber Bragg grating inscription in a photonic crystal fiber using a phase mask and a short focal length lens. Optics Express, 2018, 26, 14741.	3.4	6
48	All-in-fiber amplification and compression of coherent frequency-shifted solitons tunable in the 1800–2000  nm range. Photonics Research, 2018, 6, 368.	7.0	27
49	Influence of attenuation on self-organized second-harmonic generation in a germanium-doped microstructured silica fiber. Optics Letters, 2018, 43, 2791.	3.3	Ο
50	Twin-Core Fiber-Based Mach Zehnder Interferometer for Simultaneous Measurement of Strain and Temperature. Sensors, 2018, 18, 915.	3.8	15
51	Hybrid materials based on PEGDMA matrix and europium(III) carboxylates -thermal and luminescent investigations. European Polymer Journal, 2018, 106, 318-328.	5.4	11
52	A fiber optic temperature sensor based on multi-core microstructured fiber with coupled cores for high temperature environment. , 2018, , .		3
53	Measurement of birefringence and ellipticity of polarization eigenmodes in spun highly birefringent fibers using spectral interferometry and lateral point-force method. Optics Express, 2018, 26, 34185.	3.4	12
54	An all-fiber mid-infrared (6 – 9 µm) source based on difference frequency generation in OP-GaP crystal. , 2018, , .		0

4

#	Article	IF	CITATIONS
55	Generation of sub-100 fs pulses tunable from 1.8 to 2.0 μm from an All-fiber, All-PM Source Pumped at 1560 nm. , 2018, , .		Ο
56	Semiconductor quantum dot to fiber coupling system for 1.3 um range. , 2018, , .		0
57	Thermal and optical study of the new methacrylic copolymers useful in POF technology. , 2018, , .		0
58	Study of physico-chemical properties of the new potential optical polymers based on 2-hydroxyethyl methacrylate. , 2018, , .		0
59	Microbending losses in optical fibers with different cross-sections. , 2018, , .		1
60	Three fold symmetric microstructured fibers for customized sub-nanosecond supercontinuum generation. Optics Communications, 2017, 393, 45-48.	2.1	2
61	Dual-core fiber based strain sensor for application in extremely high temperatures. , 2017, , .		1
62	Effect of the different chain transfer agents on molecular weight and optical properties of poly(methyl methacrylate). Optical Materials, 2017, 70, 25-30.	3.6	11
63	Impact of thermal pre-treatment on preforms for fast Bragg gratings inscription using undoped PMMA POFs. , 2017, , .		0
64	Fabry-Perot cavity based on polymer FBG as refractive index sensor. Optics Communications, 2017, 394, 37-40.	2.1	21
65	A surface plasmon resonance sensor based on a single mode D-shape polymer optical fiber. Journal of Optics (United Kingdom), 2017, 19, 025001.	2.2	27
66	Optical power 1 × 7 splitter based on multicore fiber technology. Optical Fiber Technology, 2017, 37, 1-5.	2.7	6
67	Copolymerization and thermal study of the new methacrylate derivative of 2,4,6-trichlorophenol. Journal of Thermal Analysis and Calorimetry, 2017, 127, 2263-2271.	3.6	6
68	An all-PM fiber source generating 5.4 nJ, 95 fs laser pulses in the 2 \hat{l} 4m spectral range. , 2017, , .		0
69	Polymer-based composite active fiber doped with Tm ³⁺ and Yb ³⁺ — Technology and luminescent properties in VIS spectral range. , 2017, , .		0
70	Analysis of phase sensitivity to longitudinal strain in microstructured optical fibers. Optics Express, 2017, 25, 12216.	3.4	5
71	Polarized all-normal dispersion supercontinuum reaching 25 µm generated in a birefringent microstructured silica fiber. Optics Express, 2017, 25, 27452.	3.4	31
72	High-power frequency comb source tunable from 27 to 42  μm based on difference frequency generat pumped by an Yb-doped fiber laser. Optics Letters, 2017, 42, 1748.	ion 3.3	61

#	Article	IF	CITATIONS
73	Generation of sub-100  fs pulses tunable from 1700 to 2100  nm from a compact frequency laser. Photonics Research, 2017, 5, 151.	-shifted Er- 7.0	fiber ₃₂
74	All-polarization-maintaining, stretched-pulse Tm-doped fiber laser, mode-locked by a graphene saturable absorber. Optics Letters, 2017, 42, 1592.	3.3	67
75	Hydrostatic Pressure and Temperature Measurements Using an In-Line Mach-Zehnder Interferometer Based on a Two-Mode Highly Birefringent Microstructured Fiber. Sensors, 2017, 17, 1648.	3.8	9
76	Fast Bragg Grating Inscription in PMMA Polymer Optical Fibres: Impact of Thermal Pre-Treatment of Preforms. Sensors, 2017, 17, 891.	3.8	62
77	Refractive index sensor using a Fabry-Perot cavity in polymer fiber. , 2017, , .		0
78	Polymer and tapered silica fiber connection for polymer fiber sensor application. , 2017, , .		0
79	High birefringent microstructured polymer optical fiber with frozen stresses. , 2017, , .		0
80	Highly birefringent dual-mode nonlinear fibers for customised supercontinuum generation. , 2017, , .		0
81	Brillouin scattering effect in the multicore optical fiber applied to fiber optic shape sensing. , 2017, , .		0
82	Dual-core optical fiber based strain sensor for remote sensing in hard-to-reach areas. , 2017, , .		0
83	All-fiber intensity bend sensor based on photonic crystal fiber with asymmetric air-hole structure. , 2017, , .		0
84	Passive fiber optic temperature sensor for safety applications. , 2017, , .		0
85	Optical fiber strain sensor for application in intelligent intruder detection systems. , 2017, , .		0
86	Radiation-hardened optical amplifier based on multicore fiber for telecommunication satellites. , 2017, , .		0
87	Coherent supercontinuum generation up to 22 µm in an all-normal dispersion microstructured silica fiber. Optics Express, 2016, 24, 30523.	3.4	31
88	Preparation and physicochemical characterisation of functionalised multi-walled carbon nanotubes. Adsorption, 2016, 22, 481-488.	3.0	0
89	Molecular alignment relaxation in polymer optical fibers for sensing applications. Optical Fiber Technology, 2016, 28, 11-17.	2.7	36
90	Thermal effects on the photoelastic coefficient of polymer optical fibers. Optics Letters, 2016, 41, 2517.	3.3	14

#	Article	IF	CITATIONS
91	Bragg Gratings Inscription in Highly Birefringent Microstructured POFs. IEEE Photonics Technology Letters, 2016, 28, 621-624.	2.5	5
92	Group Polarimetric Pressure Sensitivity of an Elliptical-Core Side-Hole Fiber at Telecommunication Wavelengths. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 49-54.	2.9	22
93	Spectral characteristics of PMMA doped with dimethacrylate derivative of naphthalene-2,7-diol use full in UV sensors. Photonics Letters of Poland, 2016, 8, .	0.4	0
94	Supercontinuum generation in highly birefringent dual-mode fiber. Photonics Letters of Poland, 2016, 8, .	0.4	0
95	Supercontinuum generation in three-fold symmetry microstructured fibers in visible and infrared spectral regions. Photonics Letters of Poland, 2016, 8, .	0.4	0
96	Nanotag-enabled photonic crystal fiber as quantitative surface-enhanced Raman scattering optofluidic platform. Applied Physics Letters, 2015, 106, .	3.3	16
97	Experimental Investigation of Supercontinuum Generation in Photonic Crystal Fibers Pumped With Sub-ns Pulses. Journal of Lightwave Technology, 2015, 33, 2106-2110.	4.6	7
98	Optical fiber technology in Poland: four decades of development 1975-2015. , 2015, , .		4
99	All-fiber 1 x 7 optical power splitter. Proceedings of SPIE, 2015, , .	0.8	0
100	Seven-core active fibre for application in telecommunication satellites. Proceedings of SPIE, 2015, , .	0.8	0
101	Highly birefringent polymer fibers for hydrostatic pressure sensing. Proceedings of SPIE, 2015, , .	0.8	0
102	Microstructured optical fiber Bragg grating as an internal three-dimensional strain sensor for composite laminates. Smart Materials and Structures, 2015, 24, 055003.	3.5	27
103	Temperature sensing using the spectral interference of polarization modes of a highly birefringent fiber. Proceedings of SPIE, 2015, , .	0.8	0
104	Highly birefringent polymer side-hole fiber for hydrostatic pressure sensing. Optics Letters, 2015, 40, 3033.	3.3	7
105	Inscription of long period gratings using an ultraviolet laser beam in the diffusion-doped microstructured polymer optical fiber. Applied Optics, 2015, 54, 6327.	2.1	4
106	Tunable Optofluidic Polymer Photonic Liquid Crystal Fibers. Molecular Crystals and Liquid Crystals, 2015, 619, 2-11.	0.9	0
107	Multicore optical fibres for next generation telecommunication transmission systems and components. Photonics Letters of Poland, 2015, 7, .	0.4	2
108	Influence of photonic crystal fiber manufacturing inaccuracies on supercontinuum generation. Proceedings of SPIE, 2014, , .	0.8	0

#	Article	IF	CITATIONS
109	Rocking filter induced mechanically in a highly birefringent microstructured polymer fiber. Applied Optics, 2014, 53, 7729.	2.1	0
110	Birefringent optical fiber with dispersive orientation of polarization axes. Optics Express, 2014, 22, 25347.	3.4	8
111	Microstructured optical fiber Bragg grating-based strain and temperature sensing in the concrete buffer of the Belgian supercontainer concept. Proceedings of SPIE, 2014, , .	0.8	4
112	Disbond monitoring in adhesive joints using shear stress optical fiber sensors. Smart Materials and Structures, 2014, 23, 075006.	3.5	27
113	Microstructured optical fiber Bragg grating-based shear stress sensing in adhesive bonds. , 2014, , .		0
114	Microstructured fibres ultraviolet sources for sensing applications. Proceedings of SPIE, 2014, , .	0.8	0
115	Optical fiber elements for addressing individual cores in multicore optical fiber sensors. Proceedings of SPIE, 2014, , .	0.8	1
116	Fiber Bragg grating-based shear strain sensors for adhesive bond monitoring. Proceedings of SPIE, 2014, , .	0.8	1
117	Analysis of supercontinuum generated with endlessly single mode new type of microstructured fibre series with near-visible zero dispersion wavelength. Proceedings of SPIE, 2014, , .	0.8	0
118	Lateral force sensing system based on different photonic crystal fibres. Sensors and Actuators A: Physical, 2014, 205, 86-91.	4.1	10
119	Microstructured polymer optical fiber for long period gratings fabrication using an ultraviolet laser beam. Optics Letters, 2014, 39, 2242.	3.3	19
120	Novel Sensor Design Using Photonic Crystal Fibres for Monitoring the Onset of Corrosion in Reinforced Concrete Structures. Journal of Lightwave Technology, 2014, 32, 891-896.	4.6	17
121	Polymer optical microstructured fiber with birefringence induced by stress-applying elements. Optics Letters, 2014, 39, 3018.	3.3	10
122	Influence of X-rays on the thermal properties of poly(methyl methacrylate). Photonics Letters of Poland, 2014, 6, .	0.4	0
123	Hydrostatic Pressure and Strain Sensitivity of Long Period Grating Fabricated in Polymer Microstructured Fiber. IEEE Photonics Technology Letters, 2013, 25, 496-499.	2.5	28
124	Attenuation of the photonic liquid crystal fibers with various core diameters. , 2013, , .		1
125	Sensing characteristics of polymer highly birefringent side-hole fiber. , 2013, , .		1
126	Physical sorption and thermogravimetry as the methods used to analyze linear polymeric structure. Adsorption, 2013, 19, 851-859.	3.0	6

#	Article	IF	CITATIONS
127	Sensitivity of Birefringent Microstructured Polymer Optical Fiber to Hydrostatic Pressure. IEEE Photonics Technology Letters, 2013, 25, 1562-1565.	2.5	15
128	Nonlinear frequency conversion in a birefringent microstructured fiber tuned by externally applied hydrostatic pressure. Optics Letters, 2013, 38, 5260.	3.3	13
129	Fiber Bragg grating inscription in few-mode highly birefringent microstructured fiber. Optics Letters, 2013, 38, 2224.	3.3	10
130	Experimental study of dispersion characteristics for a series of microstructured fibers for customized supercontinuum generation. Optics Express, 2013, 21, 7107.	3.4	24
131	Shear stress sensing with Bragg grating-based sensors in microstructured optical fibers. Optics Express, 2013, 21, 20404.	3.4	46
132	Spectral-Domain Measurements of Birefringence and Sensing Characteristics of a Side-Hole Microstructured Fiber. Sensors, 2013, 13, 11424-11438.	3.8	18
133	Large range linear torsion sensor based on a suspended-core fiber loop mirror. Optical Engineering, 2013, 52, 020501.	1.0	3
134	Tunable filter based on two cascaded photonic liquid crystal fibers. Photonics Letters of Poland, 2013, 5, .	0.4	3
135	Low loss poly(methyl methacrylate) useful in polymer optical fibres technology. Photonics Letters of Poland, 2013, 5, .	0.4	1
136	Spectral-Domain Measurement of Strain Sensitivity of a Two-Mode Birefringent Side-Hole Fiber. Sensors, 2012, 12, 12070-12081.	3.8	8
137	Highly birefringent dual-mode microstructured fiber with enhanced polarimetric strain sensitivity of the second order mode. Optics Express, 2012, 20, 26996.	3.4	19
138	Towards flexible photonic sensing skins with optical fiber sensors. , 2012, , .		0
139	Photonic sensor of liquids based on suspended-core fibres. Proceedings of SPIE, 2012, , .	0.8	1
140	Large Area Multimode Photonic Band-Gap Propagation in Photonic Liquid-Crystal Fiber. IEEE Photonics Technology Letters, 2012, 24, 631-633.	2.5	16
141	Investigation of dispersion characteristics of highly nonlinear microstructured fibre series for customized supercontinuum generation. Proceedings of SPIE, 2012, , .	0.8	1
142	Transverse force sensitivity of photonic crystal fibres. , 2012, , .		0
143	Transverse force sensitivity of joint photonic crystal fibres. , 2012, , .		3
144	Photonic Crystal Fiber With Large Mode Area and Characteristic Bending Properties. IEEE Photonics Technology Letters, 2012, 24, 1409-1411.	2.5	28

#	Article	IF	CITATIONS
145	Control Over the Pressure Sensitivity of Bragg Grating-Based Sensors in Highly Birefringent Microstructured Optical Fibers. IEEE Photonics Technology Letters, 2012, 24, 527-529.	2.5	37
146	Photonic Band Gap Fibers with Novel Chiral Nematic and Low-Birefringence Nematic Liquid Crystals. Molecular Crystals and Liquid Crystals, 2012, 558, 184-193.	0.9	4
147	Applying optical design methods to the development of application specific photonic crystal fibres. , 2012, , .		2
148	Photonic crystal fiber with large-mode area and low-bending loss for high-power compact lasers and amplifiers. , 2012, , .		0
149	Design of a low-bending-loss large-mode-area photonic crystal fiber. Proceedings of SPIE, 2012, , .	0.8	3
150	Transverse propagation of ultraviolet and infrared femtosecond laser pulses in photonic crystal fibers. Photonics Letters of Poland, 2012, 4, .	0.4	5
151	Towards micro-structured optical fiber sensors for transverse strain sensing in smart composite materials. , 2011, , .		11
152	Characterization of photonic crystal fibres with OTDR. , 2011, , .		3
153	Very high polarimetric sensitivity to strain of second order mode of highly birefringent microstructured fibre. , 2011, , .		4
154	Low-Loss Patch Cords by Effective Splicing of Various Photonic Crystal Fibers With Standard Single Mode Fiber. Journal of Lightwave Technology, 2011, 29, 2940-2946.	4.6	18
155	Large-mode-area photonic crystal fiber with double lattice constant structure and low bending loss. Optics Express, 2011, 19, 22628.	3.4	58
156	Challenges in characterization of photonic crystal fibers. , 2011, , .		2
157	Influence of Fiber Orientation on Femtosecond Bragg Grating Inscription in Pure Silica Microstructured Optical Fibers. IEEE Photonics Technology Letters, 2011, 23, 1832-1834.	2.5	22
158	Photonic crystal fiber Bragg grating based sensors: opportunities for applications in healthcare. Proceedings of SPIE, 2011, , .	0.8	5
159	Microstructured Optical Fiber Sensors Embedded in a Laminate Composite for Smart Material Applications. Sensors, 2011, 11, 2566-2579.	3.8	70
160	Photonic crystal fiber Bragg grating based sensors – opportunities for applications in healthcare. , 2011, , .		1
161	Emerging photonic devices based on photonic liquid crystal fibers. Photonics Letters of Poland, 2011, 3, .	0.4	3
162	UV Bragg grating inscription in germanium-doped photonic crystal fibers. Proceedings of SPIE, 2010, , .	0.8	1

#	Article	IF	CITATIONS
163	Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure. Optics Express, 2010, 18, 15113.	3.4	137
164	Bragg Grating Inscription in GeO -Doped Microstructured Optical Fibers. Journal of Lightwave Technology, 2010, 28, 1459-1467.	4.6	41
165	V type high birefringent PCF fiber for hydrostatic pressure sensing. Photonics Letters of Poland, 2010, 2, .	0.4	3
166	Technology of high birefringent microstructured polymer optical fibers. Photonics Letters of Poland, 2010, 2, .	0.4	0
167	Mass Manufacturable 180\$^{circ}\$-Bend Single-Mode Fiber Socket Using Hole-Assisted Low Bending Loss Fiber. IEEE Photonics Technology Letters, 2008, 20, 187-189.	2.5	9
168	Highly birefringent holey fibers with zero polarimetric sensitivity to temperature. Proceedings of SPIE, 2008, , .	0.8	0
169	Technology of suspended core microstructured optical fibers for evanesced wave and plasmon resonance optical fiber sensors. , 2008, , .		6
170	<title>Measurements of HB photonic crystal fibers with low temperature sensitivity</title> . Proceedings of SPIE, 2008, , .	0.8	0
171	<title>Measurement of modal birefringence and temperature sensitivity of birefringent holey fibers</title> . , 2008, , .		0
172	<title>Supercontinuum generation in suspended core microstructured optical fibers</title> . , 2008, , .		4
173	Sensing with photonic crystal fibres. , 2007, , .		3
174	Investigations of birefringence of the fundamental and the higher order modes in index guiding photonic crystal fiber. , 2007, , .		0
175	<title>Sensing applications of photonic crystal fibres</title> ., 2007, , .		1
176	Sensing properties of Bragg grating in highly birefringent and single mode photonic crystal fiber. , 2007, , .		2
177	Measurements of sensitivity to hydrostatic pressure and temperature in highly birefringent photonic crystal fibers. Optical and Quantum Electronics, 2007, 39, 481-489.	3.3	23
178	Measurements of hydrostatic pressure and temperature sensitivity in birefringent holey fibers. , 2006, 6182, 586.		0
179	Enhanced cross phase modulation instability in birefringent photonic crystal fibers in the anomalous dispersion regime. Optics Express, 2006, 14, 8290.	3.4	12
180	Technology of high-birefringent photonic crystal fibers for sensing applications. , 2006, , .		1

#	Article	IF	CITATIONS
181	Polarizing Properties of Photonic Crystal Fibers. , 2006, , .		4
182	Microstructured low and high birefringence four core fibers for sensing applications. , 2006, 6189, 77.		3
183	Theoretical investigations of birefringent holey fiber of new construction. , 2005, , .		0
184	New kinds of microstructured fibers for change of birefringence caused by Kerr effect. , 2005, , .		1
185	Transmission properties and preparation of the side metal pipe optical fibers with silver layers. , 2005, , \cdot		Ο
186	Microstructured polarizing fiber. , 2005, , .		1
187	Analysis of birefringent doped-core holey fibers for Bragg gratings. , 2005, 5855, 351.		2
188	Temperature sensitivity in birefringent photonic crystal fiber with triple defect. , 2005, , .		0
189	<title>Experimental structures of silica holey fibers with triangular lattice</title> . , 2004, , .		1
190	<title>Multiparameter sensitivities of birefringent photonic crystal fiber</title> . , 2004, , .		3
191	Pressure sensitivity of the birefringent photonic crystal fiber with triple defect. , 2004, , .		1
192	<title>The ytterbium-doped double-clad optical fiber for applications in fiber lasers</title> . , 2004, , .		0
193	<title>Chemical technique production of silver layers as protective coatings of optical fibers</title> . , 2003, , .		Ο
194	<title>Experimental holey fibers</title> . , 2003, 5028, 26.		0
195	<title>Protective coatings for side-hole optical fibers</title> ., 2003, 5028, 192.		Ο
196	Technical aspects of hybrid method of optical fibers production for telecommunication uses. , 2001, , .		0
197	Preparation of liquid crystal optical fibers. , 2001, , .		0
198	Method for calculation of loss dependence of single-mode optical fibers on diffusion of water. , 2000, , .		0

#	Article	IF	CITATIONS
199	<title>Analysis of sensitivity of side-hole optical fibers to pressure and temperature by the finite element method</title> . , 1997, 3054, 84.		2