List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6135940/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Differential Functional Responses of Neutrophil Subsets in Severe COVID-19 Patients. Frontiers in Immunology, 2022, 13, .                                                                                 | 2.2 | 10        |
| 2  | Neutrophils produce proinflammatory or anti-inflammatory extracellular vesicles depending on the environmental conditions. Journal of Leukocyte Biology, 2021, 109, 793-806.                              | 1.5 | 37        |
| 3  | Patients with Proliferative Lupus Nephritis Have Autoantibodies That React to Moesin and<br>Demonstrate Increased Clomerular Moesin Expression. Journal of Clinical Medicine, 2021, 10, 793.              | 1.0 | 3         |
| 4  | A specific low-density neutrophil population correlates with hypercoagulation and disease severity in hospitalized COVID-19 patients. JCI Insight, 2021, 6, .                                             | 2.3 | 79        |
| 5  | The Inhibitory Receptor CLEC12A Regulates PI3K-Akt Signaling to Inhibit Neutrophil Activation and Cytokine Release. Frontiers in Immunology, 2021, 12, 650808.                                            | 2.2 | 16        |
| 6  | Regulation of the Expression, Oligomerisation and Signaling of the Inhibitory Receptor CLEC12A by<br>Cysteine Residues in the Stalk Region. International Journal of Molecular Sciences, 2021, 22, 10207. | 1.8 | 4         |
| 7  | Proteomic Analysis Identifies Distinct Glomerular Extracellular Matrix in Collapsing Focal Segmental<br>Glomerulosclerosis. Journal of the American Society of Nephrology: JASN, 2020, 31, 1883-1904.     | 3.0 | 37        |
| 8  | Therapeutic targeting of neutrophil exocytosis. Journal of Leukocyte Biology, 2020, 107, 393-408.                                                                                                         | 1.5 | 17        |
| 9  | Mature neutrophils suppress T cell immunity in ovarian cancer microenvironment. JCI Insight, 2019, 4, .                                                                                                   | 2.3 | 93        |
| 10 | Biomarker enhanced risk prediction for development of AKI after cardiac surgery. BMC Nephrology, 2018, 19, 102.                                                                                           | 0.8 | 14        |
| 11 | Neutrophil exocytosis induces podocyte cytoskeletal reorganization and proteinuria in experimental glomerulonephritis. American Journal of Physiology - Renal Physiology, 2018, 315, F595-F606.           | 1.3 | 7         |
| 12 | Hepatitis C mixed cryoglobulinemia with undetectable viral load: A case series. JAAD Case Reports, 2018,<br>4, 684-687.                                                                                   | 0.4 | 5         |
| 13 | Frontline Science: Tumor necrosis factor-α stimulation and priming of human neutrophil granule<br>exocytosis. Journal of Leukocyte Biology, 2017, 102, 19-29.                                             | 1.5 | 28        |
| 14 | Re-Examining Neutrophil Participation in GN. Journal of the American Society of Nephrology: JASN, 2017, 28, 2275-2289.                                                                                    | 3.0 | 11        |
| 15 | Characterization of glomerular extracellular matrixÂby proteomic analysis of laser-captured<br>microdissected glomeruli. Kidney International, 2017, 91, 501-511.                                         | 2.6 | 49        |
| 16 | ABIN1 Determines Severity of Glomerulonephritis via Activation of Intrinsic Glomerular Inflammation.<br>American Journal of Pathology, 2017, 187, 2799-2810.                                              | 1.9 | 12        |
| 17 | Endocytosis is required for exocytosis and priming of respiratory burst activity in human neutrophils. Inflammation Research, 2017, 66, 891-899.                                                          | 1.6 | 7         |
| 18 | Multiple Phenotypic Changes Define Neutrophil Priming. Frontiers in Cellular and Infection<br>Microbiology, 2017, 7, 217.                                                                                 | 1.8 | 140       |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | STAT3 Signaling in B Cells Is Critical for Germinal Center Maintenance and Contributes to the Pathogenesis of Murine Models of Lupus. Journal of Immunology, 2016, 196, 4477-4486.                                              | 0.4 | 69        |
| 20 | Autoantibodies targeting glomerular annexin A2 identify patients with proliferative lupus nephritis.<br>Proteomics - Clinical Applications, 2015, 9, 1012-1020.                                                                 | 0.8 | 37        |
| 21 | Changing the concepts of immuneâ€mediated glomerular diseases through proteomics. Proteomics -<br>Clinical Applications, 2015, 9, 967-971.                                                                                      | 0.8 | 5         |
| 22 | Baclofen, a GABABR Agonist, Ameliorates Immune-Complex Mediated Acute Lung Injury by Modulating<br>Pro-Inflammatory Mediators. PLoS ONE, 2015, 10, e0121637.                                                                    | 1.1 | 14        |
| 23 | TAT-SNAP-23 treatment inhibits the priming of neutrophil functions contributing to shock and/or sepsis-induced extra-pulmonary acute lung injury. Innate Immunity, 2015, 21, 42-54.                                             | 1.1 | 34        |
| 24 | Functionally and morphologically distinct populations of extracellular vesicles produced by human neutrophilic granulocytes. Journal of Leukocyte Biology, 2015, 98, 583-589.                                                   | 1.5 | 45        |
| 25 | The Pore-Forming Toxin Listeriolysin O Is Degraded by Neutrophil Metalloproteinase-8 and Fails To<br>Mediate <i>Listeria monocytogenes</i> Intracellular Survival in Neutrophils. Journal of Immunology,<br>2014, 192, 234-244. | 0.4 | 29        |
| 26 | Mixed cryoglobulinemia and secondary membranoproliferative glomerulonephritis associated with ehrlichiosis. CEN Case Reports, 2014, 3, 178-182.                                                                                 | 0.5 | 5         |
| 27 | Characteristics and outcomes in communityâ€acquired versus hospitalâ€acquired acute kidney injury.<br>Nephrology, 2013, 18, 183-187.                                                                                            | 0.7 | 77        |
| 28 | Exocytosis of Neutrophil Granule Subsets and Activation of Prolyl Isomerase 1 Are Required for Respiratory Burst Priming. Journal of Innate Immunity, 2013, 5, 277-289.                                                         | 1.8 | 26        |
| 29 | Technical note: proteomic approaches to fundamental questions about neutrophil biology. Journal of<br>Leukocyte Biology, 2013, 94, 683-692.                                                                                     | 1.5 | 18        |
| 30 | ABIN1 Dysfunction as a Genetic Basis for Lupus Nephritis. Journal of the American Society of Nephrology: JASN, 2013, 24, 1743-1754.                                                                                             | 3.0 | 70        |
| 31 | Antibacterial effect of microvesicles released from human neutrophilic granulocytes. Blood, 2013, 121, 510-518.                                                                                                                 | 0.6 | 185       |
| 32 | Inhibition of Neutrophil Exocytosis Ameliorates Acute Lung Injury in Rats. Shock, 2013, 39, 286-292.                                                                                                                            | 1.0 | 33        |
| 33 | Writing a first grant proposal. Nature Immunology, 2012, 13, 105-108.                                                                                                                                                           | 7.0 | 7         |
| 34 | Olfactomedin 4 Inhibits Cathepsin C-Mediated Protease Activities, Thereby Modulating Neutrophil<br>Killing of <i>Staphylococcus aureus</i> and <i>Escherichia coli</i> in Mice. Journal of Immunology,<br>2012, 189, 2460-2467. | 0.4 | 78        |
| 35 | Granule Exocytosis Contributes to Priming and Activation of the Human Neutrophil Respiratory<br>Burst. Journal of Immunology, 2011, 187, 391-400.                                                                               | 0.4 | 83        |
| 36 | Identification of Phosphoproteins Associated with Human Neutrophil Granules Following<br>Chemotactic Peptide Stimulation. Molecular and Cellular Proteomics, 2011, 10, M110.001552.                                             | 2.5 | 16        |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The fate of Npt2a: the role of the actin cytoskeleton and SNARE proteins. FASEB Journal, 2011, 25, 1041.17.                                                                                                                           | 0.2 | 0         |
| 38 | Application of proteomics to neutrophil biology. Journal of Proteomics, 2010, 73, 552-561.                                                                                                                                            | 1.2 | 32        |
| 39 | Counterregulation of clathrin-mediated endocytosis by the actin and microtubular cytoskeleton in human neutrophils. American Journal of Physiology - Cell Physiology, 2009, 296, C857-C867.                                           | 2.1 | 26        |
| 40 | Comparison of Proteins Expressed on Secretory Vesicle Membranes and Plasma Membranes of Human<br>Neutrophils. Journal of Immunology, 2008, 180, 5575-5581.                                                                            | 0.4 | 88        |
| 41 | Anti-proteinase 3 antibodies both stimulate and prime human neutrophils. Nephrology Dialysis<br>Transplantation, 2008, 24, 1150-1157.                                                                                                 | 0.4 | 5         |
| 42 | Heat Shock Protein 27 Regulates Neutrophil Chemotaxis and Exocytosis through Two Independent<br>Mechanisms. Journal of Immunology, 2007, 178, 2421-2428.                                                                              | 0.4 | 43        |
| 43 | Proteomic analysis defines altered cellular redox pathways and advanced glycation end-product<br>metabolism in glomeruli of <i>db/db</i> diabetic mice. American Journal of Physiology - Renal<br>Physiology, 2007, 293, F1157-F1165. | 1.3 | 68        |
| 44 | The actin cytoskeleton regulates exocytosis of all neutrophil granule subsets. American Journal of<br>Physiology - Cell Physiology, 2007, 292, C1690-C1700.                                                                           | 2.1 | 102       |
| 45 | Proteomics and Diabetic Nephropathy. Seminars in Nephrology, 2007, 27, 627-636.                                                                                                                                                       | 0.6 | 27        |
| 46 | A Proteomic Screen Identified Stress-Induced Chaperone Proteins as Targets of Akt Phosphorylation in<br>Mesangial Cells. Journal of Proteome Research, 2006, 5, 1636-1646.                                                            | 1.8 | 45        |
| 47 | Proteomic Analysis of Human Neutrophils. , 2006, 332, 343-356.                                                                                                                                                                        |     | 12        |
| 48 | p38 MAPK/HSP25 signaling mediates cadmium-induced contraction of mesangial cells and renal glomeruli. American Journal of Physiology - Renal Physiology, 2005, 288, F1133-F1143.                                                      | 1.3 | 46        |
| 49 | Myeloid-Related Protein-14 Is a p38 MAPK Substrate in Human Neutrophils. Journal of Immunology, 2005, 174, 7257-7267.                                                                                                                 | 0.4 | 61        |
| 50 | Î <sup>3</sup> -Amino Butyric Acid Type B Receptors Stimulate Neutrophil Chemotaxis during Ischemia-Reperfusion.<br>Journal of Immunology, 2005, 174, 7242-7249.                                                                      | 0.4 | 58        |
| 51 | Defining mitogen-activated protein kinase pathways with mass spectrometry-based approaches. Mass<br>Spectrometry Reviews, 2005, 24, 847-864.                                                                                          | 2.8 | 8         |
| 52 | Proteomic Analysis of Human Neutrophil Granules. Molecular and Cellular Proteomics, 2005, 4,<br>1503-1521.                                                                                                                            | 2.5 | 281       |
| 53 | Parathyroid Hormone-mediated Regulation of Na+-K+-ATPase Requires ERK-dependent Translocation of Protein Kinase Cα. Journal of Biological Chemistry, 2005, 280, 8705-8713.                                                            | 1.6 | 27        |
| 54 | Proteomic Identification and Immunolocalization of Increased Renal Calbindin-D28k Expression in OVE26 Diabetic Mice. Review of Diabetic Studies, 2005, 2, 19-19.                                                                      | 0.5 | 26        |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Alterations in the Renal Elastin-Elastase System in Type 1 Diabetic Nephropathy Identified by Proteomic<br>Analysis. Journal of the American Society of Nephrology: JASN, 2004, 15, 650-662.                           | 3.0 | 102       |
| 56 | Methylglyoxal: a stimulus to neutrophil oxygen radical production in chronic renal failure?.<br>Nephrology Dialysis Transplantation, 2004, 19, 1702-1707.                                                              | 0.4 | 47        |
| 57 | Effects of high-flux hemodialysis on oxidant stress. Kidney International, 2003, 63, 353-359.                                                                                                                          | 2.6 | 55        |
| 58 | Oxidant Stress in Hemodialysis Patients: What Are the Determining Factors?. Artificial Organs, 2003, 27, 230-236.                                                                                                      | 1.0 | 68        |
| 59 | MAPK-activated protein kinase-2 participates in p38 MAPK-dependent and ERK-dependent functions in human neutrophils. Cellular Signalling, 2003, 15, 993-1001.                                                          | 1.7 | 77        |
| 60 | Heat Shock Protein 27 Controls Apoptosis by Regulating Akt Activation. Journal of Biological Chemistry, 2003, 278, 27828-27835.                                                                                        | 1.6 | 320       |
| 61 | Identification of the p16-Arc Subunit of the Arp 2/3 Complex as a Substrate of MAPK-activated Protein<br>Kinase 2 by Proteomic Analysis. Journal of Biological Chemistry, 2003, 278, 36410-36417.                      | 1.6 | 52        |
| 62 | Akt Phosphorylates p47 <i>phox</i> and Mediates Respiratory Burst Activity in Human Neutrophils.<br>Journal of Immunology, 2003, 170, 5302-5308.                                                                       | 0.4 | 196       |
| 63 | Proteomic Identification of 14-3-3ζ as a Mitogen-Activated Protein Kinase-Activated Protein Kinase 2<br>Substrate: Role in Dimer Formation and Ligand Binding. Molecular and Cellular Biology, 2003, 23,<br>5376-5387. | 1.1 | 123       |
| 64 | Urinary Proteomics and Biomarker Discovery for Glomerular Diseases. , 2003, 141, 292-307.                                                                                                                              |     | 39        |
| 65 | Proteomic Approach to Identification of Novel Kinase Substrates in Mesangial Cells. , 2003, 141, 231-244.                                                                                                              |     | 2         |
| 66 | Proteomics and Diabetic Nephropathy. , 2003, 141, 142-154.                                                                                                                                                             |     | 12        |
| 67 | ldentification of 14-3-3ζ as a Protein Kinase B/Akt Substrate. Journal of Biological Chemistry, 2002, 277,<br>21639-21642.                                                                                             | 1.6 | 80        |
| 68 | Mechanisms of hypothermic protection against ischemic liver injury in mice. American Journal of<br>Physiology - Renal Physiology, 2002, 282, G608-G616.                                                                | 1.6 | 45        |
| 69 | Proteomic analysis of normal human urinary proteins isolated by acetone precipitation or ultracentrifugation. Kidney International, 2002, 62, 1461-1469.                                                               | 2.6 | 324       |
| 70 | The calcium-sensing receptor regulates calcium absorption in MDCK cells by inhibition of PMCA.<br>American Journal of Physiology - Renal Physiology, 2001, 280, F815-F822.                                             | 1.3 | 53        |
| 71 | Role of extracellular signal-regulated kinase and phosphatidylinositol-3 kinase in chemoattractant and LPS delay of constitutive neutrophil apoptosis. Cellular Signalling, 2001, 13, 335-343.                         | 1.7 | 88        |
| 72 | p38 Kinase-dependent MAPKAPK-2 Activation Functions as 3-Phosphoinositide-dependent Kinase-2 for Akt<br>in Human Neutrophils. Journal of Biological Chemistry, 2001, 276, 3517-3523.                                   | 1.6 | 242       |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Deficient homologous desensitization of formyl peptide receptors stably expressed in undifferentiated HL-60 cells. Biochemical Pharmacology, 2000, 60, 179-187.                                                                            | 2.0 | 7         |
| 74 | Differential Mitogen-Activated Protein Kinase Stimulation by Fcl <sup>3</sup> Receptor IIa and Fcl <sup>3</sup> Receptor IIIb<br>Determines the Activation Phenotype of Human Neutrophils. Journal of Immunology, 2000, 164,<br>6530-6537. | 0.4 | 42        |
| 75 | Granulocyte-Macrophage Colony-Stimulating Factor Delays Neutrophil Constitutive Apoptosis<br>Through Phosphoinositide 3-Kinase and Extracellular Signal-Regulated Kinase Pathways. Journal of<br>Immunology, 2000, 164, 4286-4291.         | 0.4 | 248       |
| 76 | Priming of the Neutrophil Respiratory Burst Involves p38 Mitogen-activated Protein Kinase-dependent<br>Exocytosis of Flavocytochrome b 558-containing Granules. Journal of Biological Chemistry, 2000, 275,<br>36713-36719.                | 1.6 | 139       |
| 77 | The Calcium-Sensing Receptor Stimulates JNK in MDCK Cells. Biochemical and Biophysical Research Communications, 2000, 275, 538-541.                                                                                                        | 1.0 | 37        |
| 78 | Transplantation, not dialysis, corrects azotemia-dependent priming of the neutrophil oxidative burst.<br>American Journal of Kidney Diseases, 1999, 33, 483-491.                                                                           | 2.1 | 34        |
| 79 | Effect of γ Subunit Carboxyl Methylation on the Interaction of G Protein α Subunits with βγ Subunits of<br>Defined Composition. Cellular Signalling, 1998, 10, 131-136.                                                                    | 1.7 | 15        |
| 80 | Activation of Mitogen-activated Protein Kinases by Formyl Peptide Receptors Is Regulated by the Cytoplasmic Tail. Journal of Biological Chemistry, 1998, 273, 20916-20923.                                                                 | 1.6 | 14        |
| 81 | Bacterial phagocytosis activates extracellular signal-regulated kinase and p38 mitogen-activated protein kinase cascades in human neutrophils. Journal of Leukocyte Biology, 1998, 64, 835-844.                                            | 1.5 | 93        |
| 82 | Activation of mitogen-activated protein kinase cascades during priming of human neutrophils by TNF-α<br>and GM-CSF. Journal of Leukocyte Biology, 1998, 64, 537-545.                                                                       | 1.5 | 147       |
| 83 | Soluble TNFα Receptors Are Increased in Chronic Renal Insufficiency and Hemodialysis and Inhibit<br>Neutrophil Priming by TNFα. Artificial Organs, 1996, 20, 390-395.                                                                      | 1.0 | 11        |
| 84 | Azotemia, TNFα, and LPS prime the human neutrophil oxidative burst by distinct mechanisms. Kidney<br>International, 1996, 50, 407-416.                                                                                                     | 2.6 | 32        |
| 85 | Chemoattractant receptor-specific differences in G protein activation rates regulate effector enzyme and functional responses. Journal of Leukocyte Biology, 1995, 57, 679-686.                                                            | 1.5 | 17        |
| 86 | TNF-α stimulates increased plasma membrane guanine nucleotide binding protein activity in polymorphonuclear leukocytes. Journal of Leukocyte Biology, 1995, 57, 500-506.                                                                   | 1.5 | 22        |
| 87 | Hemodialysis with Cellulose Membranes Primes the Neutrophil Oxidative Burst. Artificial Organs, 1995, 19, 801-807.                                                                                                                         | 1.0 | 42        |
| 88 | Influence of suspension on the oxidative burst by rat neutrophils. Journal of Applied Physiology, 1994, 76, 387-390.                                                                                                                       | 1.2 | 14        |
| 89 | Effect of prenylcysteine analogues on chemoattractant receptor-mediated G protein activation.<br>Cellular Signalling, 1994, 6, 569-579.                                                                                                    | 1.7 | 1         |
| 90 | Role of Carboxylmethylation in Chemoattractant Receptor-Stimulated G Protein Activation and<br>Functional Responses. Biochemical and Biophysical Research Communications, 1994, 200, 1604-1614.                                            | 1.0 | 11        |

| #   | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Desensitization by protein kinase C activation differentially uncouples formyl peptide receptors from effector enzymes in HL-60 granulocytes. Cellular Signalling, 1993, 5, 735-745.                                    | 1.7  | 5         |
| 92  | Rapid Degradation of NAD by Retinoic Acid-Differentiated HL-60 Granulocyte Membranes Prevents ADP Ribosylation. Biochemical and Biophysical Research Communications, 1993, 192, 870-878.                                | 1.0  | 4         |
| 93  | Role of Isoprenoid Metabolism in Chemotactic Peptide Receptor-Mediated G Protein Activation.<br>Biochemical and Biophysical Research Communications, 1993, 197, 763-770.                                                | 1.0  | 4         |
| 94  | Differential cholera-toxin- and pertussis-toxin-catalysed ADP-ribosylation of G-proteins coupled to formyl-peptide and leukotriene B4 receptors. Biochemical Journal, 1993, 289, 469-473.                               | 1.7  | 16        |
| 95  | Interferon-Î <sup>3</sup> Induces Phosphorylation of Multiple Small-Molecular-Weight Proteins in U937 Cells.<br>Journal of Interferon Research, 1992, 12, 289-296.                                                      | 1.2  | 2         |
| 96  | Interferon-Î <sup>3</sup> Enhances Superoxide Production by HL-60 Cells Stimulated with Multiple Agonists.<br>Journal of Interferon Research, 1991, 11, 69-74.                                                          | 1.2  | 12        |
| 97  | Modulation of transmembrane signalling in HL-60 granulocytes by tumour necrosis factor-α.<br>Biochemical Journal, 1991, 279, 455-460.                                                                                   | 1.7  | 15        |
| 98  | Bacterial lipopolysaccharide enhances polymorphonuclear leukocyte function independent of changes in intracellular calcium. Inflammation, 1990, 14, 599-611.                                                            | 1.7  | 22        |
| 99  | Polymorphonuclear Leukocyte Function during Hemodialysis: Relationship to Complement Activation.<br>Nephron, 1989, 52, 119-124.                                                                                         | 0.9  | 37        |
| 100 | Role of intracellular calcium in priming of human peripheral blood monocytes by bacterial<br>lipopolysaccharide. Inflammation, 1989, 13, 681-692.                                                                       | 1.7  | 38        |
| 101 | Evidence that activation of a common G-protein by receptors for leukotriene B4 and<br>N-formylmethionyl-leucyl-phenylalanine in HL-60 cells occurs by different mechanisms. Biochemical<br>Journal, 1989, 260, 427-434. | 1.7  | 56        |
| 102 | Body Fat and the Activity of the Autonomic Nervous System. New England Journal of Medicine, 1988, 318, 1077-1083.                                                                                                       | 13.9 | 373       |
| 103 | USE OF OKT3 MONOCLONAL ANTIBODY IN THE TREATMENT OF ACUTE CARDIAC ALLOGRAFT REJECTION.<br>Transplantation, 1988, 45, 727-729.                                                                                           | 0.5  | 7         |
| 104 | Alterations in Select Immunologic Parameters Following Total Artificial Heart Implantation. Artificial Organs, 1987, 11, 52-62.                                                                                         | 1.0  | 16        |
| 105 | Potential mechanisms of cytosolic calcium modulation in interferon-γ treated U937 cells. Biochemical<br>and Biophysical Research Communications, 1987, 145, 1295-1301.                                                  | 1.0  | 11        |
| 106 | Regulation of oxygen radical release from murine peritoneal macrophages by pharmacologic doses of<br>PGE2. Free Radical Biology and Medicine, 1987, 3, 15-20.                                                           | 1.3  | 17        |
| 107 | Mechanism of prostaglandin E2 inhibition of acute changes in vascular permeability. Inflammation, 1987, 11, 279-288.                                                                                                    | 1.7  | 11        |
| 108 | Biochemical basis of HLA-DR and CR3 modulation on human peripheral blood monocytes by<br>lipopolysaccharide. Cellular Immunology, 1987, 108, 242-248.                                                                   | 1.4  | 13        |

| #   | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Mechanism by which methylprednisolone inhibits acute immune complex-induced changes in vascular permeability. Inflammation, 1986, 10, 321-332.                                                                                | 1.7 | 12        |
| 110 | Case Report: Non-Hodgkin's Lymphoma and Membranous Nephropathy in Mixed Connective Tissue<br>Disease. American Journal of the Medical Sciences, 1985, 290, 152-154.                                                           | 0.4 | 5         |
| 111 | Case Report: Mesangial Proliferative Glomerulonephritis Associated with Multiple Myeloma. American<br>Journal of the Medical Sciences, 1985, 290, 114-117.                                                                    | 0.4 | 8         |
| 112 | Alterations in serum antibody and peripheral T-lymphocyte subsets resulting from treatment of<br>murine immune complex glomerulonephritis with PGE2. Clinical Immunology and Immunopathology,<br>1985, 34, 100-108.           | 2.1 | 3         |
| 113 | ALTERATIONS IN T LYMPHOCYTE SUBPOPULATIONS ASSOCIATED WITH RENAL ALLOGRAFT REJECTION.<br>Transplantation, 1984, 37, 261-264.                                                                                                  | 0.5 | 19        |
| 114 | Paroxysmal Cold Hemoglobinuria in a Patient with <i>Klebsiella pneumonia</i> . Vox Sanguinis, 1983, 44,<br>167-172.                                                                                                           | 0.7 | 14        |
| 115 | Treatment of murine immune complex glomerulonephritis with prostaglandin E2: Dose-response of immune complex deposition, antibody synthesis, and glomerular damage. Clinical Immunology and Immunopathology, 1983, 26, 18-23. | 2.1 | 25        |
| 116 | Suppression of Murine T-Cell Mitogenesis by Metabolic Products of Arachidonic Acid.<br>Immunopharmacology and Immunotoxicology, 1982, 4, 53-64.                                                                               | 0.8 | 4         |
| 117 | Chronic Serum Sickness in the Mouse. Nephron, 1982, 31, 82-88.                                                                                                                                                                | 0.9 | 11        |
| 118 | Alteration in immune complex glomerulonephritis by arachidonic acid. Prostaglandins, 1982, 23,<br>383-389.                                                                                                                    | 1.2 | 9         |
| 119 | MASSIVE POST-TRANSPLANT PROTEINURIA WITH MINIMAL HISTOLOGICAL CHANGES. Transplantation, 1980, 29, 392-396.                                                                                                                    | 0.5 | 11        |
| 120 | Acute interstitial nephritis in a patient with aspirin hypersensitivity. Clinical Immunology and<br>Immunopathology, 1979, 14, 64-69.                                                                                         | 2.1 | 15        |
| 121 | The Transmission of Candida Albicans by Cadaveric Allografts. Journal of Urology, 1977, 118, 513-515.                                                                                                                         | 0.2 | 21        |