
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/613580/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8057-8062.	3.3	1,065
2	Comparative population genomics of maize domestication and improvement. Nature Genetics, 2012, 44, 808-811.	9.4	816
3	Crop genomics: advances and applications. Nature Reviews Genetics, 2012, 13, 85-96.	7.7	439
4	Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proceedings of the United States of America, 2007, 104, 8641-8648.	3.3	385
5	Genetic evidence for a second domestication of barley (Hordeum vulgare) east of the Fertile Crescent. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3289-3294.	3.3	331
6	Is self-fertilization an evolutionary dead end? Revisiting an old hypothesis with genetic theories and a macroevolutionary approach. American Journal of Botany, 2001, 88, 1143-1150.	0.8	321
7	Barley whole exome capture: a tool for genomic research in the genus <i>Hordeum</i> and beyond. Plant Journal, 2013, 76, 494-505.	2.8	260
8	Exome sequencing highlights the role of wild-relative introgression in shaping the adaptive landscape of the wheat genome. Nature Genetics, 2019, 51, 896-904.	9.4	225
9	Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15780-15785.	3.3	190
10	Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes. BMC Genomics, 2010, 11, 702.	1.2	189
11	Low levels of linkage disequilibrium in wild barley (Hordeum vulgare ssp. spontaneum) despite high rates of self-fertilization. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2442-2447.	3.3	184
12	Genetic diversity and structure in semiwild and domesticated chiles (<i>Capsicum annuum</i> ;) Tj ETQq0 0 0 rg	BT /Overlo 0.8	ck 10 Tf 50 3
13	Genetic Costs of Domestication and Improvement. Journal of Heredity, 2018, 109, 103-116.	1.0	149
14	Genomics and the Contrasting Dynamics of Annual and Perennial Domestication. Trends in Genetics, 2015, 31, 709-719.	2.9	145

15	MULTILOCUS INTERACTIONS RESTRICT GENE INTROGRESSION IN INTERSPECIFIC POPULATIONS OF POLYPLOID GOSSYPIUM (COTTON). Evolution; International Journal of Organic Evolution, 2000, 54, 798-814.	1.1	133
16	Tracing the Geographic Origins of Major Avocado Cultivars. Journal of Heredity, 2008, 100, 56-65.	1.0	126
17	Barley landraces are characterized by geographically heterogeneous genomic origins. Genome Biology, 2015, 16, 173.	3.8	117
18	Crop-to-weed introgression has impacted allelic composition of johnsongrass populations with and without recent exposure to cultivated sorghum. Molecular Ecology, 2005, 14, 2143-2154.	2.0	111

2

#	Article	IF	CITATIONS
19	Distinct geographic patterns of genetic diversity are maintained in wild barley (Hordeum vulgare ssp.) Tj ETQq1 of America, 2003, 100, 10812-10817.	1 0.784314 3.3	rgBT /Over 94
20	Megabase-Scale Inversion Polymorphism in the Wild Ancestor of Maize. Genetics, 2012, 191, 883-894.	1.2	94
21	The Role of Deleterious Substitutions in Crop Genomes. Molecular Biology and Evolution, 2016, 33, 2307-2317.	3.5	83
22	Toward Integration of Comparative Genetic, Physical, Diversity, and Cytomolecular Maps for Grasses and Grains, Using the Sorghum Genome as a Foundation. Plant Physiology, 2001, 125, 1325-1341.	2.3	81
23	Genes that determine flower color: the role of regulatory changes in the evolution of phenotypic adaptations. Molecular Phylogenetics and Evolution, 2003, 29, 507-518.	1.2	73
24	Development and Genetic Characterization of an Advanced Backcross-Nested Association Mapping (AB-NAM) Population of Wild × Cultivated Barley. Genetics, 2016, 203, 1453-1467.	1.2	73
25	Determination and Applications of Environmental Costs at Different Sized Airports – Aircraft Noise and Engine Emissions. Transportation, 2006, 33, 45-61.	2.1	70
26	Deleterious variants in Asian rice and the potential cost of domestication. Molecular Biology and Evolution, 2017, 34, msw296.	3.5	68
27	Plant Genome Editing and the Relevance of Off-Target Changes. Plant Physiology, 2020, 183, 1453-1471.	2.3	68
28	Estimating the Contribution of Mutation, Recombination and Gene Conversion in the Generation of Haplotypic Diversity. Genetics, 2006, 173, 1705-1723.	1.2	44
29	Nucleotide Diversity and Linkage Disequilibrium in Wild Avocado (Persea americana Mill.). Journal of Heredity, 2008, 99, 382-389.	1.0	44
30	Resequencing Data Indicate a Modest Effect of Domestication on Diversity in Barley: A Cultigen With Multiple Origins. Journal of Heredity, 2014, 105, 253-264.	1.0	42
31	The Influence of Linkage and Inbreeding on Patterns of Nucleotide Sequence Diversity at Duplicate Alcohol Dehydrogenase Loci in Wild Barley (Hordeum vulgaressp. spontaneum). Genetics, 2002, 162, 2007-2015.	1.2	41
32	Evidence of Positive Selection for a Glycogen Synthase (<i>GYS1</i>) Mutation in Domestic Horse Populations. Journal of Heredity, 2014, 105, 163-172.	1.0	40
33	Environmental Association Analyses Identify Candidates for Abiotic Stress Tolerance in <i>Glycine soja</i> , the Wild Progenitor of Cultivated Soybeans. G3: Genes, Genomes, Genetics, 2016, 6, 835-843.	0.8	39
34	Two Genomic Regions Contribute Disproportionately to Geographic Differentiation in Wild Barley. G3: Genes, Genomes, Genetics, 2014, 4, 1193-1203.	0.8	38
35	Intercontinental dispersal: The origin of the widespread South American plant speciesGilia laciniata (Polemoniaceae) from a rare California and Oregon coastal endemic. Plant Systematics and Evolution, 2000, 224, 13-32.	0.3	36
36	Comparative Genomics Approaches Accurately Predict Deleterious Variants in Plants. G3: Genes, Genomes, Genetics, 2018, 8, 3321-3329.	0.8	36

#	Article	IF	CITATIONS
37	Molecular tests of the proposed diploid hybrid origin ofGilia achilleifolia(Polemoniaceae). American Journal of Botany, 1998, 85, 1439-1453.	0.8	33
38	The environmental cost implication of hub–hub versus hub by-pass flight networks. Transportation Research, Part D: Transport and Environment, 2007, 12, 143-157.	3.2	33
39	Genomic variants affecting homoeologous gene expression dosage contribute to agronomic trait variation in allopolyploid wheat. Nature Communications, 2022, 13, 826.	5.8	31
40	Development of a Multiparent Population for Genetic Mapping and Allele Discovery in Six-Row Barley. Genetics, 2019, 213, 595-613.	1.2	23
41	Evaluating an interspecific Helianthus annuus×Helianthus tuberosus population for use in a perennial sunflower breeding program. Field Crops Research, 2014, 155, 254-264.	2.3	21
42	The Effects of Both Recent and Long-Term Selection and Genetic Drift Are Readily Evident in North American Barley Breeding Populations. G3: Genes, Genomes, Genetics, 2016, 6, 609-622.	0.8	21
43	MULTILOCUS INTERACTIONS RESTRICT GENE INTROGRESSION IN INTERSPECIFIC POPULATIONS OF POLYPLOID GOSSYPIUM (COTTON). Evolution; International Journal of Organic Evolution, 2000, 54, 798.	1.1	20
44	<scp>angsd</scp> â€wrapper: utilities for analysing nextâ€generation sequencing data. Molecular Ecology Resources, 2016, 16, 1449-1454.	2.2	18
45	Environmental Association Identifies Candidates for Tolerance to Low Temperature and Drought. G3: Genes, Genomes, Genetics, 2019, 9, 3423-3438.	0.8	18
46	Domestication: Polyploidy boosts domestication. Nature Plants, 2016, 2, 16116.	4.7	16
47	Hordeum. , 2011, , 309-319.		12
48	Tracing the Geographic Origins of Weedy Ipomoea purpurea in the Southeastern United States. Journal of Heredity, 2013, 104, 666-677.	1.0	12
49	The Fate of Deleterious Variants in a Barley Genomic Prediction Population. Genetics, 2019, 213, 1531-1544.	1.2	12
50	Evaluation and implications of environmental charges on commercial flights. Transport Reviews, 2001, 21, 377-395.	4.7	11
51	Error detection in SNP data by considering the likelihood of recombinational history implied by three-site combinations. Bioinformatics, 2007, 23, 1807-1814.	1.8	11
52	Comparative Analyses Identify the Contributions of Exotic Donors to Disease Resistance in a Barley Experimental Population. G3: Genes, Genomes, Genetics, 2013, 3, 1945-1953.	0.8	11
53	<scp>SNPM</scp> eta: <scp>SNP</scp> annotation and <scp>SNP</scp> metadata collection without a reference genome. Molecular Ecology Resources, 2014, 14, 419-425.	2.2	11
54	Nucleotide Sequence Diversity and Linkage Disequilibrium of Four Nuclear Loci in Foxtail Millet (Setaria italica). PLoS ONE, 2015, 10, e0137088.	1.1	6

#	Article	IF	CITATIONS
55	Alleleâ€specific PCR can improve the efficiency of experimental resolution of heterozygotes in resequencing studies. Molecular Ecology Resources, 2010, 10, 647-658.	2.2	4
56	Nucleotide Sequence Diversity of Floral Pigment Genes in Mexican Populations of Ipomoea purpurea (Morning Glory) Accord with a Neutral Model of Evolution. Journal of Heredity, 2012, 103, 863-872.	1.0	4
57	Fast neutron mutagenesis in soybean enriches for small indels and creates frameshift mutations. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	4
58	The evolutionary patterns of barley pericentromeric chromosome regions, as shaped by linkage disequilibrium and domestication. Plant Journal, 0, , .	2.8	3
59	Mutational Processes. , 2004, , 760-762.		2
60	Utilizing whole genome sequences to study population genomics of gene networks: a case study of the Arabidopsis thalianaimmune-signaling network. Genome Biology, 2011, 12, .	13.9	0