
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6135761/publications.pdf Version: 2024-02-01

CANCLU

#	Article	IF	CITATIONS
1	Microstructure, mechanical properties and post-weld heat treatments of dissimilar laser-welded Ti2AlNb/Ti60 sheet. Rare Metals, 2023, 42, 1332-1342.	3.6	5
2	Study of NiAl-based alloy parts produced by metal injection moulding. Powder Metallurgy, 2022, 65, 52-60.	0.9	2
3	Adhesion-Shielding based synthesis of interfacially active magnetic Janus nanoparticles. Journal of Colloid and Interface Science, 2022, 607, 1741-1753.	5.0	11
4	Preparation of high-performance NiAlV composite sheets with novel layered microstructure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 833, 142586.	2.6	1
5	Tunable Friction Properties of Periodic Wrinkled BaTiO ₃ Membranes. Advanced Materials Interfaces, 2022, 9, .	1.9	5
6	Effect of grain size on the yield stress and microscopic mechanism of a near-α titanium alloy during non-superplastic hot deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 840, 142932.	2.6	13
7	Analysing the Interaction between Microscopic Deformation, Microstructure and Void Evolution of Near-1± Titanium Alloys during Non-Superplastic Hot Deformation by an Integrated Crystal Plasticity Finite Element Model. Materials, 2022, 15, 294.	1.3	Ο
8	Study on fast gas forming with in-die quenching for titanium alloys and the strengthening mechanisms of the components. Journal of Materials Research and Technology, 2022, 18, 3916-3932.	2.6	10
9	Fabrication and joining of NiAl and TiAl intermetallics by additive sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 849, 143493.	2.6	5
10	A novel composited process of solution treatment-hot gas forming and stress relaxation aging for titanium alloys. Journal of Materials Processing Technology, 2021, 288, 116904.	3.1	5
11	Investigations on the NiAl–Cr(Mo) eutectic alloy with optimized microstructure and improved room-temperature compressive properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 813, 141138.	2.6	13
12	Microstructure and mechanical properties of Ti-6Al-4V/Ti-22Al-25Nb joint formed by diffusion bonding. Transactions of Nonferrous Metals Society of China, 2021, 31, 1339-1349.	1.7	12
13	Dynamic Softening and Hardening Behavior and the Micro-Mechanism of a TC31 High Temperature Titanium Alloy Sheet within Hot Deformation. Materials, 2021, 14, 6515.	1.3	8
14	Effects of strain state and slip mode on the texture evolution of a near-α TA15 titanium alloy during hot deformation based on crystal plasticity method. Journal of Materials Science and Technology, 2020, 38, 125-134.	5.6	44
15	Experimental investigation into the electropulsing assisted pulsating gas forming of CP-Ti tubes. Journal of Materials Processing Technology, 2020, 278, 116492.	3.1	12
16	Fundamentals, processes and equipment for hot medium pressure forming of light material tubular components. International Journal of Lightweight Materials and Manufacture, 2020, 3, 1-19.	1.3	11
17	Hot Gas Pressure Forming of Ti-55 High Temperature Titanium Alloy Tubular Component. Materials, 2020, 13, 4636.	1.3	6
18	Enhanced formability and forming efficiency for two-phase titanium alloys by Fast light Alloys Stamping Technology (FAST). Materials and Design, 2020, 194, 108948.	3.3	26

#	Article	IF	CITATIONS
19	Progress on rapid hot gas forming of titanium alloys: mechanism, modelling, innovations and applications. Procedia Manufacturing, 2020, 50, 265-270.	1.9	6
20	Effect of microstructure on mechanical properties of net-structured TiBw/TA15 composite subjected to hot plastic deformation. Composites Part B: Engineering, 2020, 187, 107798.	5.9	12
21	High-efficiency forming processes for complex thin-walled titanium alloys components: state-of-the-art and perspectives. International Journal of Extreme Manufacturing, 2020, 2, 032001.	6.3	31
22	Evolution and Distribution of Geometrically Necessary Dislocations for TA15 Titanium Alloy Sheets During the Hot Tensile Process. Jom, 2019, 71, 2303-2312.	0.9	7
23	Anisotropic Deformation Behavior and Forming Limit of Hot-Rolled Al/Mg/Al Three-Layered Composite Sheets. Jom, 2019, 71, 1696-1704.	0.9	8
24	A unified internal state variable material model for Ti2AlNb-alloy and its applications in hot gas forming. International Journal of Mechanical Sciences, 2019, 164, 105126.	3.6	19
25	Microstructure and mechanical properties at elevated temperature of laser-welded Ti–22Al–25Nb alloy sheets. Intermetallics, 2019, 112, 106516.	1.8	1
26	Microstructure analysis on enhancing mechanical properties at 750â€Â°C and room temperature of Ti-22Al-24Nb-0.5Mo alloy tubes fabricated by hot gas forming. Journal of Alloys and Compounds, 2019, 789, 639-646.	2.8	20
27	Recrystallization behavior during hot tensile deformation of TA15 titanium alloy sheet with substantial prior deformed substructures. Materials Characterization, 2019, 151, 429-435.	1.9	27
28	Prediction of microstructure evolution during hot gas forming of Ti2AlNb-based alloy tubular component with square cross-section. Procedia Manufacturing, 2018, 15, 1156-1163.	1.9	9
29	Investigation on precision and performance for hot gas forming of thin-walled components of Ti2AlNb-based alloy. MATEC Web of Conferences, 2018, 190, 07001.	0.1	0
30	Experimental and modelling study of an approach to enhance gas bulging formability of TA15 titanium alloy tube based on dynamic recrystallization. Journal of Materials Processing Technology, 2018, 259, 387-396.	3.1	21
31	Study on the mixed dynamic recrystallization mechanism during the globularization process of laser-welded TA15 Ti-alloy joint under hot tensile deformation. Materials Characterization, 2017, 126, 57-63.	1.9	30
32	Microstructure and texture evolution during the fabricating and hot gas free bulging process of a laser-welded Ti-22Al-25Nb alloy tube. Materials Characterization, 2017, 131, 116-127.	1.9	5
33	Effects of annealing on microstructure and deformation uniformity of Ti-22Al-24Nb-0.5Mo laser-welded joints. Materials and Design, 2017, 130, 166-174.	3.3	15
34	Microstructure and mechanical properties of Ti2AlNb cup-shaped part prepared by hot gas forming: determining forming temperature, strain rate, and heat treatment. International Journal of Advanced Manufacturing Technology, 2017, 92, 4583-4594.	1.5	13
35	Effect of recrystallization on hot deformation mechanism of TA15 titanium alloy under uniaxial tension and biaxial gas bulging conditions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 708, 149-158.	2.6	18
36	Correlation between softening mechanisms and deformation non-uniformity of laser-welded titanium alloy tube during gas bulging process. Materials Characterization, 2017, 133, 196-205.	1.9	5

#	Article	IF	CITATIONS
37	Creep behavior and effects of heat treatment on creep resistance of Ti-22Al-24Nb-0.5Mo alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 680, 182-189.	2.6	35
38	The deformation and microstructure of Ti-3Al-2.5V tubular component for non-uniform temperature hot gas forming. International Journal of Advanced Manufacturing Technology, 2017, 88, 2143-2152.	1.5	16
39	Approach to Enhance Gas Bulging Formability of TA15 Titanium Alloy Tube Based on Dynamic Recrystallization. Procedia Engineering, 2017, 207, 2340-2345.	1.2	1
40	Experimental and simulated analysis of texture evolution of TA15 titanium alloy sheet during hot tensile deformation at 750°C. Procedia Engineering, 2017, 207, 2179-2184.	1.2	5
41	Analysis of deformation inhomogeneity and slip mode of TA15 titanium alloy sheets during the hot tensile process based on crystal plasticity model. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 707, 30-39.	2.6	27
42	Formability and microstructure of Ti22Al24.5Nb0.5Mo rolled sheet within hot gas bulging tests at constant equivalent strain rate. Materials and Design, 2016, 108, 298-307.	3.3	27
43	Effects of flow stress behaviour, pressure loading path and temperature variation on high-pressure pneumatic forming of Ti-3Al-2.5V tubes. International Journal of Advanced Manufacturing Technology, 2016, 85, 869-879.	1.5	10
44	Loading path and microstructure study of Ti-3Al-2.5V tubular components within hot gas forming at 800°C. International Journal of Advanced Manufacturing Technology, 2016, 87, 1823-1833.	1.5	15
45	Influence of punch shape on geometrical profile and quality of hole piercing-flanging under high pressure. International Journal of Advanced Manufacturing Technology, 2016, 86, 1253-1262.	1.5	5
46	Microstructural investigations for laser welded joints of Ti–22Al–25Nb alloy sheets upon large deformation at elevated temperature. Materials and Design, 2016, 90, 723-732.	3.3	35
47	Formability and microstructure evolution for hot gas forming of laser-welded TA15 titanium alloy tubes. Materials and Design, 2016, 91, 269-277.	3.3	50
48	Deformation behaviour of laser-welded tube blank of TA15 Ti-alloy for gas forming at elevated temperature. MATEC Web of Conferences, 2015, 21, 06005.	0.1	2
49	The effect of pressurization path on high pressure gas forming of Ti-3Al-2.5V at elevated temperature. MATEC Web of Conferences, 2015, 21, 06007.	0.1	1
50	Effects of the U–O forming process on microstructure evolution of TA15 tubes. Materials Research Innovations, 2015, 19, S5-1202-S5-1207.	1.0	0
51	Hot Tensile Behavior and Self-consistent Constitutive Modeling of TA15 Titanium Alloy Sheets. Journal of Materials Engineering and Performance, 2015, 24, 4647-4655.	1.2	11
52	Mechanism of Hydrojoining and Approach to Increase Torsion Strength of Assembled Camshafts. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2015, 137, .	1.3	7
53	Simulating sheet metal double-sided hydroforming by using thick shell element. Journal of Materials Processing Technology, 2015, 221, 13-20.	3.1	17
54	Effect of vacuum annealing on microstructure and mechanical properties of TA15 titanium alloy sheets. Transactions of Nonferrous Metals Society of China, 2015, 25, 1881-1888.	1.7	23

#	Article	IF	CITATIONS
55	Mechanism of saturated flow stress during hot tensile deformation of a TA15 Ti alloy. Materials and Design, 2015, 86, 146-151.	3.3	38
56	Effect of feeding length on deforming behavior of Ti-3Al-2.5ÂV tubular components prepared by tube gas forming at elevated temperature. International Journal of Advanced Manufacturing Technology, 2015, 81, 1809-1816.	1.5	22
57	Analysis on critical conditions of sidewall wrinkling for hydroforming of thin-walled Tee-joint. International Journal of Machine Tools and Manufacture, 2015, 97, 42-49.	6.2	27
58	Behavior and modeling of flow softening and ductile damage evolution in hot forming of TA15 alloy sheets. Materials and Design, 2015, 85, 135-148.	3.3	65
59	High Pressure Pneumatic Forming of Ti-3Al-2.5V Titanium Tubes in a Square Cross-Sectional Die. Materials, 2014, 7, 5992-6009.	1.3	24
60	Effect of thermal cycling on the damping behavior in alumina borate whisker with and without Bi2O3 coating reinforced pure aluminum composites. Materials & Design, 2014, 60, 244-249.	5.1	16
61	Formability Determination of Titanium Alloy Tube for High Pressure Pneumatic Forming at Elevated Temperature. Procedia Engineering, 2014, 81, 2243-2248.	1.2	9
62	Damping peak and damping mechanism in Al18B4O33w/Al composite containing Sn and Bi interfacial phases at room temperature. Materials & Design, 2013, 46, 916-921.	5.1	7
63	Simulation and Experiment on Warm Hydroforming of AZ31 Magnesium Alloy Tube. , 2013, , .		4
64	An Approach to Improve Thickness Uniformity of TA15 Tubular Part Formed by Gas Bulging Process. Advanced Materials Research, 2013, 712-715, 651-657.	0.3	13
65	An Approach for Increasing Branch Height of a Hydroforming T-Joint With Smaller Branch Diameter. , 2013, , .		1
66	New Developments of Hydroforming in China. Materials Transactions, 2012, 53, 787-795.	0.4	29
67	Wrinkling behavior of hydro bending of carbon steel/Al-alloy bi-layered tubes. Transactions of Nonferrous Metals Society of China, 2012, 22, s560-s565.	1.7	15
68	Welded double sheet hydroforming of complex hollow component. Transactions of Nonferrous Metals Society of China, 2012, 22, s309-s314.	1.7	5
69	Overview on constitutive modeling for hydroforming with the existence of through-thickness normal stress. Journal of Materials Processing Technology, 2012, 212, 2228-2237.	3.1	16
70	Warm hydroforming of magnesium alloy tube with large expansion ratio within non-uniform temperature field. Transactions of Nonferrous Metals Society of China, 2012, 22, s408-s415.	1.7	15
71	Effect of tool temperature and punch speed on hot stamping of ultra high strength steel. Transactions of Nonferrous Metals Society of China, 2012, 22, s534-s541.	1.7	17
72	The thermal behavior of alumina borate whisker with Bi(OH)3–Sn(OH)4 coatings. Powder Technology, 2012, 218, 124-130.	2.1	8

#	Article	IF	CITATIONS
73	Effect of internal pressure distribution on thickness uniformity of hydroforming Y-shaped tube. Transactions of Nonferrous Metals Society of China, 2011, 21, s423-s428.	1.7	8
74	Influence of tube properties on quality of hydropiercing. Transactions of Nonferrous Metals Society of China, 2011, 21, s456-s460.	1.7	5
75	Effects of internal pressure on wrinkling in warm tube hydroforming. Materials Research Innovations, 2011, 15, s478-s481.	1.0	1
76	Prediction and analysis of wrinkling in tube hydroforming process. International Journal of Materials and Product Technology, 2011, 40, 296.	0.1	4
77	Effect of post-weld heat treatment on the microstructure and plastic deformation behavior of friction stir welded 2024. Materials & Design, 2011, 32, 5055-5060.	5.1	65
78	Characteristics of thickness distribution of tailor-welded tube hydroforming. Central South University, 2011, 18, 1813-1818.	0.5	3
79	Effects of sintering temperature of whisker preform on the microstructures and tensile properties of Bi(OH)3-coated Al18B4O33 whisker-reinforced aluminum matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 5184-5189.	2.6	4
80	Effects of Preform on Thickness Distribution of Hydroformed Y-Shaped Tube. Advanced Materials Research, 2011, 189-193, 2796-2800.	0.3	7
81	Deformation evolution mechanism during hydro-bulging of tailor-welded tube with dissimilar thickness. International Journal of Advanced Manufacturing Technology, 2010, 46, 111-116.	1.5	2
82	Formability testing of AZ31B magnesium alloy tube at elevated temperature. Journal of Materials Processing Technology, 2010, 210, 877-884.	3.1	42
83	Wrinkling behavior of magnesium alloy tube in warm hydroforming. Transactions of Nonferrous Metals Society of China, 2010, 20, 1288-1293.	1.7	16
84	Warm hydroforming of magnesium alloy tube with large expansion ratio. Transactions of Nonferrous Metals Society of China, 2010, 20, 2071-2075.	1.7	16
85	Characterization of Organic Surfactant on Montmorillonite Nanoclay to Be Used in Bitumen. Journal of Materials in Civil Engineering, 2010, 22, 794-799.	1.3	38
86	Hydroforming of AZ61A tubular component with various cross sections. Transactions of Nonferrous Metals Society of China, 2009, 19, s398-s402.	1.7	7
87	Research of Metal Flow Behavior during Extrusion with Active Friction. Journal of Materials Engineering and Performance, 2008, 17, 7-14.	1.2	21
88	Process optimization diagram based on FEM simulation for extrusion of AZ31 profile. Transactions of Nonferrous Metals Society of China, 2008, 18, s247-s251.	1.7	17
89	Finite Element Simulation of Magnesium Extrusion to Manufacture a Cross-Shaped Profile. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2007, 129, 607-614.	1.3	16
90	Control and use of wrinkles in tube hydroforming. Journal of Materials Processing Technology, 2007, 182, 6-11.	3.1	58

#	ARTICLE	IF	CITATIONS
91	FEA on deformation behavior of tailor-welded tube in hydroforming. Journal of Materials Processing Technology, 2007, 187-188, 287-291.	3.1	18
92	Compressive formability of 7075 aluminum alloy rings under hydrostatic pressure. Transactions of Nonferrous Metals Society of China, 2006, 16, 1103-1109.	1.7	9
93	Analysis of thinning at the transition corner in tube hydroforming. Journal of Materials Processing Technology, 2006, 177, 688-691.	3.1	41
94	Progress in shell hydroforming. Journal of Materials Processing Technology, 2005, 167, 230-236.	3.1	28
95	Dielectric Behavior of Na _{0.5} Bi _{0.5} TiO ₃ â€Based Composites Incorporating Silver Particles. Journal of the American Ceramic Society, 2004, 87, 742-745.	1.9	27
96	Explanation of the mushroom effect in the rotary forging of a cylinder. Journal of Materials Processing Technology, 2004, 151, 178-182.	3.1	73
97	The precision forming of pin parts by cold-drawing and rotary-forging. Journal of Materials Processing Technology, 1999, 86, 252-256.	3.1	42
98	Subcritical crack growth at bimaterial interfaces: Part II. microstructural effects on fracture resistance of metal/ceramic interfaces. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996, 27, 213-219.	1.1	5
99	Effect of End Angle of Counterpunch on Y-Shape Hydroforming. Advanced Materials Research, 0, 753-755, 1539-1542.	0.3	1
100	Effects of Nonconstant Strain Rate on Forming Limit and Efficiency in High Pressure Pneumatic Forming of Ti-Alloy Components. Key Engineering Materials, 0, 622-623, 347-352.	0.4	0
101	Progress on High Pressure Pneumatic Forming and Warm Hydroforming of Titanium and Magnesium Alloy Tubular Components. Materials Science Forum, 0, 783-786, 2456-2461.	0.3	4
102	Thickness and Microstructure Analysis on Hot Gas Bulged Cup-Shaped Parts of Ti-22Al-24.5Nb-0.5Mo. Key Engineering Materials, 0, 716, 138-143.	0.4	0
103	Hot Gas Pressure Forming and Post Aging Treatment of Ti-22Al-24.5Nb-0.5Mo Square Tubes. Journal of Materials Engineering and Performance, 0, , 1.	1.2	2